=

A

E14E KBEHEES EHMBESHREE

Proceedings of the 14th Algebraic
Combinatorics Symposium

IN HONOR OF PROFESSOR MICHIO SUZUKI’S 70TH BIRTHDAY

July 14—17,1997
International Christian University
Mitaka, Tokyo JAPAN
i EREEHAE
FREf R e (BEHRA)
(FRREES : 08304003)



Proceedings of
the 14th Algebraic Combinatorics
Symposium

IN HONOR OF PROFESSOR MICHIO SUZUKYI'S 70TH BIRTHDAY

July 14 - 17, 1997
International Christian University
Mitaka, Tokyo JAPAN






Contents

o8 L £ v

Publications of Michio Suzuki........cciiiiiiiiiiiiiieoriiiiiiiiieiiiiiieiiiiiriiesrreatatenaaaanes vii

Symposim Program. . ..oooiiiiiiiiiiiiiiii i ittt ciiea ittt ettt rie et sestraananaaas x

Finite groups disconnected at the prime 2 ... i viciiieriieeeceseisiteriootsrnseccsstssscssaces 1
Michael Aschbacher

Codecs over finite rings and finite abelian groups (2 SUrvey) ......cooviviinniiiiieeiiiietiiiinienan, 5
FEiichi Bannai

Prime graphis . ... .uiiiiiiiiiiiiiiiiiiiiiiettiiiiraerectatititearaareniesantatttensarrestracarranas 14
Naoki Chigira, Nobuo liyori and Hiroyoshi Yomaki

Some formulas for spin models on distance-regular graphs .........ccvveceniiiecieeneneronieneennens 18
Brian Curtin and Kazumasa Nomura

Orders of finite linear groups ......ccvevueiniiiiiiiiiietenirieienteeceeseretensiessasccsesaseccssees 29
Walter Feit

Solubility criteria for finite BrOUPS ......ccvoiiiiiiiiiiirrriiiiateieiseecssiircnesseencccrnsciecens 32
Paul Fravell

New 5-designs constructed from the lifted Golay code over Z4 ...ccovvveennnene tettsectetrrecnniones 37
Masaaki Harada

Some highly symmetric chamber 8YStemMS ..v..ivevereieiteeiiiirrnreeeraiteieetsnssccseresesnacaseas 43
Don G. Higman

An improvement of the Ivanovbound ........ ... .iiciiiiiiiiiiiiieiitiiiiiiiitiiretiarniieineaans 49
Akira Hiraki and Jack Koolen

On association schemes with a nonsymmetric relation of valency 4 ......cooiveveienenierenianenn.... 52
Mitsugu Hirasaka :

A new cover of the 3-local geometry of €0y ...cvveiiieiieciniieiriisirierseesscserssscestssesennsen 59
Alezander Ivanov and Sergey Shpectorov

Construction of Hadamard matrices using dihedral groups .......c.ceevevvereierrectereeannneennnnnans 69
Hiroshi Kimura .

Binary code VOA and finite automorphism groups ....ceevernieeeieectensiernrecesscsscsectacennons 74
Masaaki Kitazume

Some examples of unramified extensions over quadratic fields ......cooeiiiiiiiiiiiiiiiiiiiiiiiiiee, 81
Takeshi Kondo

On a conjecturc of Bannal and Ito ......cooiiviiiiriierirtetiiieciissrsesaierssssssscensessasasassas 86
Jack Koolen

Morita cquivalent blocks of finite Broups .........cceiveeeereiiiieeneetcnererseniierrtecscnscsaranees 89
Shigeo Koshitani

The cssentials of Monstrous Moonshine .......cveviavereieriiaroerireaenassiiiesseestooorsrsesssncns 93
John McKay

The finite group theory on vertex operator algebras .....cvvviiiieieeretiiieieiineniceeeennacnecees 98
Masahiko Miyamoto

Primitive trinomials and orthogonal arrays over GF(2) «.ccvviivveeiierenisivrrranannnnenivrreenaas 108
Akihiro Munemasa

On the covering radius problein for ternary sclf-dual codes +..ovveveiiiicaiiniiaiirereassiiraesranaes 113
Michio Ozeki

The mod 2 cahomology algebras of finite groups with wreathed Sylow 2-subgroups ................. 128
Hiroki Sasaki

fid



The classification of four-weight spin models with size five .......cocooiiiiiiiiiniiiiiiniinnnnn, 135
Mitsuhito Sawano

Representations of finite Chevalley groups .......... e teMtasetanirectatarettrettastatsartorienennen 141
Toshiaki Shoji

The scmisimple approach to the classification of the finite simple groups .......ccocoviieiiieeienen. 153
Ronald Solomon

J-components in finite Groups «...vveiiiiiiiiiiiiiiiiiieiiitiiteetietetresseeserescisatnrretarrnren 157
Dernd Stellmacher

Small modules ...cvviiiiiniriiniiiiaiirtirescsosecnnsessssisctasassssssestasrsiestncarsnasnerasnne 162
Gernot Stroth

A problem of distance-regular graphs and related topics (a survey) ....ceceeviiiiiiiiiinnaniiiines 173
Hiroshi Suzuki

On the prime graph of a finite simple group, an application of the method of Feit-Thompaon-Bender-

Glauberman . ...viviiierrnnirisresscesocnceesesssnsiriosecnsasessssassossrsesssessestsssansesansan 184
Michio Suzuki

Laplacian spectrum, tree numbers and completely regular codes of graphs «....c.oovvnnaeniiaaa... 189

Yasuo Teranishi

Subgroups of Lic-type groups, splierical Tits chambersystems and presentations of Chevalley-groups 194
Franz Timmesfeld

Group association aclieme of PSL(2,7) «i.cviiiiiiiiiiiiiiiiierrniersenanneisnnrssresiecsssnsisions 205
Masato Tomiyama

Vertex of non-periodic modules in the Auslander-Reiten quiver of finite groups.......coovvvvveennn. 211
Katsuhiro Uno

Principal blocks with extra-special defect groups of order 27 ......ccivviiiiieiiriieriiennnnainnnnns 216
Yoko Usami

Perfect isometries and the Glauberman correspandence ......cocoveiiieiiieiiiiiieiiiiiiienineanan, 227
Atumi Watanabe

Ternary codes and vertex operator algebras ......ceevviiviiiiieiiiiiiiii ittt iiei et 231
Hiromichi Yamada

On the characterization of certain Cayley graphs .......ciiiiiiieiiniiieseieeiiiinsiiiiiiieeene... 242
Norio Yamazaki

The subgroup complexcs for finite GrouPs ....cvvnriiieiieniietiiiiieaiiiriiiartiiecnssesesrrnenssaes 246
Satoshi Yoshiara

Exponential formulas for finite groups and locally finitc toposes ...........coiiiiiiiiiiiiiiiiiainns 254

Tomoyuki Yoshida

Tits' classification of the buildings of spherical type in the light of the theory of association schemes 273
Paul-Hermann Zieschang

Appendix

H A DB (Group Theory in Japan (in Japancse))
—Remembrance of things past — .....ciiiniiiiiiiririretirrnaiiiiieiiiiiiencrsereisissanase 278
g5k F (Michio Suzuki)

Publications by Japancse Mathematicians in Group Theory Before 1952 .......cciivviiiiiiiinaeas 287



Preface

Thix volume contains the proceedings of the 14th Algebraic Combinatorics Conference held at the
Iutesnational Christian University (ICU) in Mitaka, Tokyo from July 14 to July 17, 1997,

This anmal dowestic conference was extended in size and in scope in honor of the 70th birthday of
Professor Michio Suzuki. Over 150 people attended the conferciice, up from the typical 100 participants.
Mauy distinguished speakers came from over-seas to honor Professor Michio Suzuki at this conference.

Professor Michio Suzuki lins hiul a great influence in group theory during the last 50 years. I believe
that his work in the 1950% ignited the work on the classification of fnite simple groups, and in the 1960's
atdd 70%s he led the developments of the classification. The classification was completed in the early
1980's by Aschbacher, Gorenstein, Thompson and matly others. We will see Professor Michio Suzuki's
most recent contribution to group theory in this volume.

Although Professor Michio Suzuki has been affiliated with University of Itlinois since 1952, hie has had
a profound influence on the development of group theory (and subsequently of algebraic combinatorics)
in Japan. Through lim, word of recent developments in group theory often reached Japan, in particular
through his regular sununer visits. His reconunendations gave many of us opportunitics to visit abroad
for research and to help us land jobs.

I think it is fair to say that much of the respect given to Japancse group theory as a whole derives
from that given to Professor Michio Suzuki as one of the top mathematicians in the world,

(Of course, many other Japanese group theorists deserve some of the credit; nonetheless, the influence
of Professor Michio Suzuki is extraordinary.)

In the main lecture, Professor Koichiro Harada outlined the mathematical work of Professor Michio
Suzuki. Unfortunately the text of this lecture was not available for this proceedings as Professor Harada
hopes to expand it to do justice to the breadth and depth of Professor Michio Suzuki’s work. We hope
that it will be ready for a more formal publication being prepared in honor of Professor Michio Suzuki.

Instead, we include in this proceedings the list of publications of Professor Michio Suzuki and the
manuseripts (written in Japauese) of his talks at Swunmer School of Algebraic Combinatorics, which was
held in July in 1994 in Matsuyama, Ehime.

On behalf of the organizing conunittee, I extend our thanks to many people who helped make this
conference a success:

To Professor Michio Suzuki for allowing us to use lis birthday for the conference, and thereby at-
tracting mnany distinguished invited speakers froin around the world;

To all the speakers and the participants;

To those who helped make this conference run smoothly, especially to thie International Christian
University;

In particular to Hiroshi Suzuki for doing all the difficult work in running the conference (including
cditing this procecdings), to Maki Murata (sccretary of the couference) and the students of ICU for their
very fine and dedicated work;

To those who contributed financially to this conferences-the conference was financed by several Grants-
in-Aid for Scientific Reareli, the Ministry of Education, Science and Culture, Japan {Kaken-hi) with
principal investigators H. Yawaki, E. Bauaai, H. Suzuki, M. Miyamioto, M. Kitazuine, and many others.

Finally we wention that we ave hoping to prepare wiother more formal volume (hopefully in hook
form) iu hottor of Professor Michio Suzuki.

Eiichi Baunai,

ou hehalf of the organizing connnittee which consists of:
Eiichi Bauad, Hiroshi Suzuki, Hiroyoshi Yanki and
Tomoyuki Yoshida
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FINITE GROUPS DISCONNECTED AT THE PRIME 2

MICHAEL ASCHBACHER

California Institute of Technology

The study of finite simple groups disconnected at some prime (particularly the
prime 2) is one of the most important chapters in finite simple group theory. Since
Suzuki, his students, and his postdocs played the leading role in this work, it seems
appropriate to give a bricf survey of the area at this conference in honor of Professor
Suzuki.

Let G be a finite group and p a prime. The commuting graph I, for G is the graph
whose vertices are the subgroups of G of order p and edges are pairs of commuting
subgroups. Define G to be connected at p if I'p is connected. It is an elementary
exercise to see that there are the following equivalent formulations of this condition:

Lemma. Let G be a finite group, p a prime divisor of the order of G, A a connected
component of I'y and H = Ng(A). Then the following are equivalent:

(1) Tp is disconnected.

(2) H is a strongly p-embedded subgroup of G. That is H is proper of order
divisible by p and |H N HY| is prime to p for all g€ G — H.

(8) Each nontrivial p-element of H fizes a unique point of the coset space G/H.

(4) No(P) < H 2 Ce(X) for P € Syl,(H) and each X of order p in P.

Depending on the situation, one or another of these points of view may be more
valuable. There are also weaker connectedness conditions which are sometimes
important. I will mention some of these later.

The theorem determining the groups disconnected at the prime 2 was one of
the major steps in the classification of the finite simple groups. This theorem is
due to Suzuki and Helmut Bender. Groups disconnected at odd primes are only
known as a corollary to the Classification, although treating a very special case of
disconnected groups at odd primes was one of the hard steps in the Classification.
One also needs to know the disconnected groups in modular representation theory,
(Alperin and Dade conjectures) the study of subgroup complexes of finite groups,
permutation group theory, etc.

The two major contributors to the determination of the groups disconnected at
2 were Suzuki and Bender. In the early sixties, Suzuki proved:

This work was partially supported by NSF-9622843



2 MICHAEL ASCHBACHER

Theorem. (Suzuki, [Su]) Let G be a transitive group of permutations on a set X
of odd order such that the stabilizer H of x € X contains a normal subgroup Q
regular on X — {z} such that H/Q is of edd order. Then either

(1) G is solvable and known, or

(2) G is an eztension of a rank 1 group L of Lie type and even characteristic
and the permutation action is on the Borel subgroups of L.

The rank 1 groups of Lie type and even characteristic are Ly(q), Sz(gq), and
Ui(q), q even. The groups Sz(q) are the Suzuki groups, and were discovered and
constructed by Suzuki in the process of proving this theorem. Only later was it
discovered that the Suzuki groups are of Lie type.

About 1970, Bender extended Suzuki’s result to a classification of groups discon-
nected at the prime 2 by showing:

Theorem. (Bender, [B]) Let G be a group with a strongly embedded subgroup H.
Then either

(1) G has cyclic or quaternion Sylow 2-subgroups, or

(2) The representation of G on the cosets of H satisfies the hypotheses of Suzuki’s
theorem.

In particular G is a simple group with a strongly 2-embedded subgroup if and
only if G is a rank 1 group of Lie type and even characteristic. Its also worth noting
that it was Brauer and Suzuki [BS] who showed that a group with quaternion Sylow
2-groups is not simple. This follows from an elementary transfer argument when
the Sylow 2-groups are cyclic.

Next I want to discuss a connectedness theorem due to Ernie Shult, one of
Suzuki’s students and an outstanding mathematician in his own right. Given
V < H <G, define V to be strongly closed in H with respect to Gif vCNH CV
forallveV.

Theorem. (Shult’s Fusion Theorem, [Sh]) Let G be a finite group, V an abelian
subgroup of G such that V = (t% N Cg(t)) for some involution t, and V is strongly
closed in H = Ng(V') with respect to G. Then G = Lg-++ Ly where [L;,Lj] = 1
for i # j, Lo/O(Lo) 13 an clementary abelian 2-group, and for i > 0, L; is L,(2"),
Sz(2"), U3(2"), or a covering of Sz(8).

At first glance this may not look like a connectedness result, but the hypotheses
are equivalent to:

G is a finite group, H < G, t is an involution in H fixing a unique point of the
coset space G/H and V = (t/1) is abelian and strongly closed in H with respect to
G.

Thus the commuting graph on ¢@ (rather than the set of all involutions of G) is
disconnected and a connected component of the graph is complete. If ¥ is of odd
order, one can omit the condition that V' is strongly closed in H with respect to G.

Shult’s Fusion Theorem was an important tool in the Classification, but even
more, it inspired at least three other important tools. First, in [G], David Gold-
schmidt classified all groups with a strongly closed abelian 2-subgroup. Thus he

2



FINITE GROUPS DISCONNECTED AT THE PRIME 2 3

weakened Shult’s hypotheses, but he also appealed to Shult’s result in his proof.
Goldschmidt’s theorem is not strictly speaking a connectedness result.

Shult never published his Fusion Theorem, but one section of his proof is repro-
duced with slight variations in the next paper. To simplify the statement of the
theorem, I assume G is simple, but this is not really necessary if one slightly extends
the class of examples.

Theorem. (Aschbacher [Al}, [A2]) Let G be a finite simple group, H < G, and
z € H an involution in the center of a Sylow 2- subgroup of G. Assume

(1) z fizes a unique point of the coset space G/H, and

(2) If z #t € 2° N Cg(2) then Cq(tz) < H.

Then H is strongly embedded in G, so G = Lo(2"), Sz(2"), or U3(2™).

I heard Shult speak about his fusion theorem at a seminar at the University
of Illinois in 1970 while I was a postdoc at Illinois with Suzuki. Reading Shult’s
paper and Bender’s paper on groups with a strongly embedded subgroup helped
me to prove the result above, and that theorem is used in turn to prove the final
connectedness result I will mention.

Define I'3 to be the commuting graph on elementary abelian 2- subgroups of G
of rank at least 2 and I‘g"’ the subgraph of non-isolated vertices in I'3.

Theorem. (Aschbacher [Al]) Let G be a finite simple group of 2-rank at least §
such that T3 is disconnected. Then G is Ly(2"), Sz(2"), Ua(2*) or Ji.

This last result is used in conjunction with signalizer functor theory to control
the groups O(Cg(t)), t an involution in G. The problem of determining all such
groups (phrased somewhat differently) was posed by Gorenstein and Walter.

In summary, the classification of groups disconnected at the prime 2 and of groups
satisfying various weaker properties, is one of the important chapters in the Classi-
fication of the finite simple groups. The fact that we have no analogous theory for
odd primes causes difficulties at various places in the Classification. Disconnected
groups continue to play an important role in representation theory, permutation
group theory, and the study of subgroup complexes.

Suzuki began work on the problem by proving the first major result in this area
in characterizing the groups of Lie type of even characteristic and Lie rank 1 as
the disconnected groups 2-transitive on there connected components. Indeed in the
process he discovered and constructed the Suzuki groups, which at that time had not
surfaced in the Lie theory. Bender completed the classification, and Suzuki’s student
Ernie Shult proved the first major result weakening the disconnected hypotheses. 1
proved the last two results in the area in work that began while I was a postdoc at
the University of Illinois with Suzuki and depended heavily on the work of Bender
and Shult.
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CODES OVER FINITE RINGS AND
FINITE ABELIAN GROUPS (A SURVEY)

ElicHi BANNAI

GRADUATE SCHOOL OF MATHEMATICS
KYUsHU UNIVERSITY

These notes are basically the transparencies of my talk at the Symposium in
honor of Professor Michio Suzuki, which was held at ICU (the International Chris-
tian University) in July 1997. In this talk, I gave a survey of recent results on the
relations between the weight enumerators of codes, invariant rings of certain finite
groups, and modular forms, including several generalizations. The main new point
of this talk is that we can define the concept of a Type II code for codes (additive
subgroups) over any finite abelian group. (Here we consider codes over any finite
abelian group instead of the usual binary field or other fields or rings.) A part of
this talk is based on ongoing joint work with Steven Dougherty, Masaaki Harada
and Manabu Qura.

§1. Review of codes over F;.

First, we give a review of the classical results concerning the relations between
binary type II (i.e., self-dual doubly even) codes, even unimodular lattices, invariant
rings of certain finite groups, and ordinary modular forms.

Let V = F} be the n-dimensional vector space over the binary field F; = {0, 1}.
A vector subspace C of V is called a (linear) code. For two elements

z=(2),72,...,Tn) EV

and
y= (yl'yzw-- 'yﬂ) eV

we define
z-y=niy1 +2y2+ - +TaYn € Fa.

The dual code C* is defined by
Cl={yeV|z-y=0,Yu€eC}.

We say that C is self-dual if C = C*t. We have k := dimC = n/2 for a self-dual
code C. We call C is doubly-even if

4|wt(u),Yu € C.
Typeset by Ap4S-TEX



Here, for u = (uj,uz,... ,u,) € C, we define wi(u) = |{j|z; # 0}|. We say that a
code C is a Type Il code (on F;) if C is self-dual and doubly-even.

Definition (Weight enumerator of a code)
For a code C, the weight enumerator W¢(z,y) of the code C is defined as follows:

Wel(z,y) = Dz y ) ¢ Clz, ).
u€C

(Note that W¢(z,y) is a homogeneous polynomial of degree n in the indeterminants
z and y.)

Now, let G be the finite group of order 192 generated by the two elements
-‘}5 ( i _11) and ( (1) ?) . Here note that the group G is a finite unitary reflection
group (No. 9 in the list of Shephard and Todd). It is known that for a binary type
11 code C, its weight enumerator We(z, y) is in the invariant ring C[z,y]¢ (by the
action of the group G on the polynomial ring C[z,y]). Moreover, it is known as
Gleason’s theorem (1970) that
(1) the vector space spanned by the weight enumerators of Type II codes coincides
with the invariant ring C[z,y]%, and that
(2) the invariant ring C|z,y]” is a polynomial ring C[f}, f2] generated by the fol-
lowing two algebraic independent polynomials f, and f;, where

fi = We(z,y) = 2% + 142ty 4+ ¢°
is the weight enumerator of the (8,4, 4]-Hamming code eg, and
2 =Wy, (z,y) = 224 4 759::'83/3 + 2576312!!12 + 759z8y18 = yu

is the weight enumerator of the [24, 12, 8]-Golay code ga.

Now, let us recall the procedure (Construction A) of constructing an integral
lattice from a binary code. Let ¢ be the natural homomorphism from Z" to
(Z/2Z)" = F3'. For a code C in F;, define

Lc = _I(C) C R".

1
7—590
It is known that if C is a binary Type II code, then L¢c is an even unimodular
lattice. The theta function of a lattice L is defined by

e[,(‘l') - E q&z-:, (q = eZm’r).

z€l

(Here 7 takes the value in the upper half plane.) Note that if L is an even uni-
modular lattice, then ©.(7) is a modular form of weght k = n/2 with respect to
the full modular group SL(2,Z). Here we recall that the complex valued function
f defined on the upper half plane  is called a modular form of weight k (with
respect to the full modular group SL(2,Z)) if the following three conditions are
satisfied.

(1) f is a holomorphic function on .



(2)
f(:::j) = (et + d)¥ f(r),¥ ( : 3) € SL(2,2).

(3) f(7) has a Fourier expansion

fr)=) arg" (g=e*").

r20

Theorem(Broué and Enguehard, 1972)
If C is a Type II code (over F3), then we have

OLc = We(83(27),62(27)).

(Here note that 83(27) = A(7) is the theta series of the 1-dimensional integral
lattice {V/2z|z € Z} and 62(27) = B(r) is the theta series of the translate (by 7‘-2-)

of the lattice {v2z]z € Z}.)
It should be pointed out that by the map

z 05 (21‘)

y — 62(27),
we get an isomorphism
Clz,y]° & C|Ey, Aud]

where E is the Eisenstein series of weight 4, and A, is the cusp form of weight 12.
Note that C[E,, A)z] is a subspace of the space of all the modular forms which is
isomorphic to the polynomial ring C[E,, E¢] generated by E; and Eg(the Eisenstein
series of weight 6). Here, E4 and E; are algebraically independent.

It is interesting to point out (cf. Ozeki[18] or Runge[19]) that if we take the
index 2 subgroup H (of order 96) of G defined by

1+t /1 1 10
P54 (9

then the above map defines an isomorphism
Clz,y)¥ = C|Eq, Ee).
Moreover,C|z,y) = C[f1, f3], where
h= Wco(%y)

and
fi=2z" - 33:1:"';/'1 —33z%y8 + y'2.

Note that H is another finite unitary reflection group (No.8 in the list of Shephard
and Todd.)

The important implication of this fact is that we can understand the space
of modular forms completely through the invariant ring of the finite group H.



Interestingly enough, this situation can be generalized in several directions. We list -
some of them in the following table.

Generalizations.
automorphic codes invariant rings
forms of finite groups
(ordinary) veight enumerator H{or G)C GL(2,C)
modular forms We(z,y) C[z,y]"
. . . H =
foos (unge) | emumerater. Zos Z31Sp(2g,2),
g H C GL(2%,C)
certain joint simultaneous
Jacobi forms weight enumerator dlagonaél.f action
(Bannai-Ozeki) (Jacobi polynomials) H (of order 96)
Runge in thezglecxilse of ("HC GL(2r,C) )
Siegel-Jacobi * *
forms
Hilbert .
dular forms Lee weight . .certain
(ﬁgrzebruch-van enumera%or finite grouwp G,
der Geer) (over Fp) G c GL(21,0)

§2. Type II Codes over Finite Rings and Finite Abelian Groups.

Codes are considered not only over binary field 3 but also over other finite fields
F3,F,,... ,F,, orover Z[4Z (as was studied by many people, including Hammons-
Kumar-Calderbank-Sloane-Sole, and others), over Z/2kZ (by M. Harada et. al.)
and so on. Also, recently, there are many interesting works on codes over some
finite rings (by Woods, Bachoc, etc. etc.)

The purpose of our study is to study codes over finite rings and arbitrary finite
abelian groups. I believe that considering (additive) codes over any finite abelian
group is the most natural and most reasonable framework for this kind of study.
(A preliminary idea is due to Delsate[8], who considered self-dual codes in this
context.) The main purpose of this talk is to define Type II codes in this general
setting. I believe that the definition given here is reasonable and gives the cor-
rect generalization. (This part of the research is based on joint work with Steven
Dougherty, Masaaki Harada and Manabu Qura.)

Before considering codes over finite abelian groups in general, we review some
basic concepts on codes over the finite rings Z/4Z and Z/2kZ.

On Z/4Z, we define the E-wi(a) for a € Z/4Z as follows. (E-wt stands for
Euclidean weight.)

a€Zf4Z 0 1 2 3
Ewi(a) 0 1 4 1

Then for u = (uy,u2,... ,u,) € (Z/4Z)", we define

E-wi(u) = ZE—wt(u;).



We call C is a Type II code over Z/4Z if
(1) C is self-dual, that is C = C* with respect to the usual inner product in
(2/42)", namely Ct ={y € V|z-y =0,Vz € C} with'z -y = 213, + 2292 +--- +
Znyn € Z/42.
(2) 8| E-wt(u),Yu € C.

On Z/2kZ, we define the E-wt(a) for a € Z/2kZ as follows.

a€Zf2kZ 0 1 2 3 -+ § oo 2k-=2 2k-1
Ewi(a) 01 49 -.- i ... 4 1 -

Similarly, we define the code C to be a Type II code, if
(1) C is self-dual with respect to the ordinary inner product in (Z/2kZ)", and
(2) 4k|B-wi(u),Yu € C.

In this case, if we define the natural homomorphism from Z"™ to (Z/2kZ)" by
@, then for each code C in (Z/2kZ)", the set Lc = —=tp™!(C) C R" becomes an

even unimodular lattice in R".

Now let us consider codes on any finite abelian group G. By a code over G, we
mean an additive subgroup C of G® = G x G x +-- x G (the direct product of n
G’s).

In order to define the concept of self-dual code, we consider the character table
of the abelian group G.

A character table P of the group G = Z/mZ is given as follows.

1 1 1 1 oo 1

1 ¢ ¢ ¢ ... (e

1 (2 (4 (8 . (2(m-l)
P= 1 (3 cs (9 .. (3(m—l)

1 : : . :

1 (m—l (2(m-1) (3(m—l) . ((m—l)’

Note that in a character table we can choose, in principle, the orderings of the
elements of G and the irreducible characters of G in any order. However, note that
here we arranged the character table P in such a way that {P = P holds.

We can take the following matrices P as character tables of the group Z2 x Z;.

1 1 1 1

1 -1 1 -1
P=1 1 21 -1

1 -1 -1 1

or

1 1 1 1

1 1 -1 -1
P=1 1 1 -r1°

1 -1 -1 1

Again, we arranged so that ‘P = P holds. Namely, we have x,(b) = xs(a),Va,b €
G. This is equivalent to saying (in the terminology of [3]) that we fix a duality

a — Xa



where x, is the (irreducible) linear character corresponding to the element a € G.
We define the concept of self-dual code by considering the following inner product
< 2,y > on G™. Fix a character table P of the abelian group G. It is important
that we take P in such a way that *P = P holds. As the above example of the group
G = 2/22 x Z[2Z shows, the choice of duality, i.e., the choice of the character table
P with *P = Pis not unique in general.
For two elements

z = (21,22,... ,Zn) EG"
and
Y= (U192, 1¥n) €G"
we define .
< z,y >= [ x=ilwi)-
i=1
Then we define

Clt={yeG"|<zy>=1VreCl

A code C is called self-dual if C+ = C. The problem we want to discuss here is:
how to define the concept of Type II code? Here we give an answer to this question.
Now, let us recall our notation again.

G is a finite abelian group of order g. Let P be a character table of G with
tP = P (so, P is a g X g-matrix.) That is, we fix a duality

a+—» x“.
We say that a diagonal matrix
o 0 - 0
0t 0 O
T=1. )
0 .0
0 -« 0 ity

has the modular invariance property if

(PT)? = (scalar) - I.

We remark that for each G, the dualities, and the solutions T of the modu-
lar invariance property (for each fixed duality) are completely determined. (See
Bannai-Bannai-Jaeger[3].)

It is known in [3] that if the order of the group G is even, then the solution T'
can be expressed in the following way, by using 7 = €274 where [ is the exponent
of the abelian group G. (The exponent is the largest order of the elements of the
abelian group G.)

7% 0 - 0
0 ot 0 O
r=|. T
: 0 .0
0 e 0 n“ﬂ—l

10



Here the a(€ G)th diagonal element is n%. (If |G| is odd, we can take n = e2?~it
and get & similar expression for T.) Also, here we assume that ag = 0 holds.

Example.
Note that if G = Z/2kZ then we have a solution

” 0 0
0 o
T= n'
: 0
0 e 0 plak-1y?

Now, for each solution T of the modular invariance property

e 0 . 0

e 0 n* 0 0
0 .0 |
0 cee 0 n“n—l

we define for each a € G, Wi(a) = as. Then for 4 = (ta)acc we define

Wi(u) = ) Wi(ua).

a€G

Note that in the case of G = Z/2kZ, (and for P and T given above), our weight
‘Wt(u) coincides with the Euclidean weight E-wi(u). So our weight is a generaliza-
tion of the Euclidean weight.

Definition
We define a code C(over an abelian group G) to be a Type II code (over an abelian
group G) if C is self-dual and

2A{Wt(u),Yu € C.

(Note that this definition of Type II codes depends not only on G but also on P
and T.)

Complete weight enumerator.
The complete weight enumerator of a code C is defined as follows:

Wel{zale € GY) = ) [] #2=™,

u€EC a€CG

where for 4 = (u;,u2,... ,u,) € G*, we define

we(u) = [{jlu; = a}l.

Then
We({zala € G}) € Clzq4|a € G)?

11



where

1
=< —P,T L(g,C
G:=< 77 >C GL(g,C)
is a finite group. It can be proved that if G = Z/2™Z, and if P and T are as before,
then the group G is a group of order 192 - 2™~1, It is very interesting that this
group G is always a finite group for any G, P and T. (This fact will be discussed in
a separate paper.) It is an intersting question to know the structure of this group
explicitly for any G, P and T.

§3. Concluding Remarks.

First we remark that considering codes over a finite abelian group is more general
than considering codes over a finite commutative ring. For a code C over a finite
ring R, i.e.,C is an additive subgroup of R", the dual code C* is defined by using
the multiplication of the ring:

(1) Cl={yeR"z-y=0,Vz€C},

where z -y = 2141 + 2y2 + ... + Zpyn. On the other hand, for a code C over an
abelian group G, i.e., an additive subgroup of G*, the dual code C* is defined by:

Clt={yeG"|<z,y>=1VzeC}.

Note that (1) corresponds to fixing a duality in the additive abelian group G =
(R,+). So codes over a finite ring may be regarded as a special case of codes over
a finite abelian group(with a certain choice of duality).

Next we consider how we may construct lattices, in certain general situation,
from codes over finite abelian groups. Let K be a finite Galois extensition of the
rational number field Q. Let 0 = ok be the ring of the integers of K. Let I be any
ideal in o0, and let

of/[=R

where R is a finite commutative ring. Let ¢ be the natural homomorphism from
(0)* to (o/I)*. For a code C in R*, ¢~}(C) may be regarded as a lattice in o".
Many interesting lattices arise in this way (see for example Bachoc|[1], etc.) Finally
we emphasize that the following situation is very interesting and worthy of further
study.

Example.

K = Q(i) where i = /=1. ox = Zli], p = 2, and I = 2Z[i]. Then o/I = R and
(R,+) = Z/2Z x Z[2Z. By considering the codes over the ring R or equivalently
codes over the abelian group G = Z/2Z x Z/2Z, we can obtain hermitian modular
forms. Further details will be treated in a separate paper.

We would like to point out that, in-this way, we can get many automorphic
forms, and also get better understandings of automorphic forms. It is very inter-
esting to note that essentially finite objects such as weight enumerators of codes or
polynomial invariants of certain finite groups enable us to control essentially infinite
objects such as automorphic forms.

12
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PRIME GRAPHS

NAOK! CHIGIRA, NOBUO IIYORI AND HIROYOSHI YAMAKI}

The purpose of this note is to announce [4]:

Main Theorem. Every non abelian Sylow subgroup of « finite group of even order
contains a non trivial element which commutes with an involution.

Our main theorem is closely related to the prime graphs of finite groups. Let G
be a finite group and T'(G) the prime graph of G. I'(G) is the graph such that the
vertex set is the set of prime divisors of |G|, and two distinct vertices p and r are
joined by an edge if and only if there exists an element of order pr in G. Let n(I'(G))
be the number of connected components of I'(G) and dg(p,r) the distance between
two vertices p and r of T'(G). It has been proved that 2(I'(G)) < 6 in [13] [9] [11] and
de(p,v) < 4 or dg(p, 1) = 00, that is, there is no path between p and r (See [10]).

Theorem 1. Let G be a finite group of even order and p be a prime divisor of |G|.
If dz(2,p) 2 2, then a Sylow p-subgroup of G is abelian.

Theorem 1 is a restatement of Main Theorem in terms of the prime graph I'(G).

Corollary 1. Let G be a finite group of even order and p be a prime divisor of |G]. If
A is a connected component of I'(G) - {p} not containing 2, then a Sylow r-subgroup
of G is abelian for any r € A.

There is a certain relation between a subgraph T(G) — {p} of ['(G) and Brauer
characters of p-modular representations of G (See [3]).

Theorem 2. Let G be ¢ finite non abelian simple group end p be a prime divisor of
|G|. Then dg(2,p) =1 or 2 provided dg(2,p) < oo.

The significance of the prime grapls of finite groups can be found in [1] [3] [5] [6]
- [7) (8] [15] [16]. Our spirits of proving theorems can be found in [1] {2] [4] [7] [9] [14].

We will give some examples of case by case analysis for finite simple groups. The-
orem 1 holds true for the sporadic simple groups by Atlus of Finite Groups although
we can find several typos in it. For a positive integer k let (k) be the set of all prime
divisors of k. Let o = {p € 7(G)|da(2,p) = 1}

tSupported in part by Grant-in-Aid for Scientific Research (N0.8304003, No.08640051), Ministry
of Education, Science, Sports and Culture, Japan.
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2 N. CHIGIRA, N. IIYOR] AND H. YAMAKI

Example. Let G be the alternating group on n-letters where n > 7 and p € #(G).
If p<n—4,thendg(2,p) =1. If p > n — 3, then Sylow p-subgroups of G are cyclic
of order p. Thus Theorem 1 holds true for the alternating groups.

n=-1
Example. Let G = PSL(n,q), ¢ = 0(2). Then |G| = ¢"-1/2 'l'Il(q""l —=1)d!,
d=(n,q—1). Let I; be the j x j identity matrix. Put

I. 0 0
ti. =10 L.y 0
L. 0 I

Then t;(1 < k < r) where r = [n/2], are representatives of the conjugacy classes of
involutions in SL(n,q). The centralizer of ¢}, in SL(n, g) is the set of all matrices of

the form
A 0O
H B 0
K L A

where (detA)?detB =1 and A is an k x k nonsingular matrix. Denote {; the homo-
morphic image of ¢; in PSL(n,q). Then t; (1 £ k& £ r) are representatives of the
conjugacy classes of involutions in PSL(n, ). Let Ci = Cg(ts). Then

n=-2&

w(Ci) = m(2 I_-‘[l (a' = 1)/(¢g - 1)d)

and
n-2

o = w(‘r]:;[l |Ce]) ==(2 I_];(qi -1))

Suppose that n > 4. Then the only factors of |G| to be considered is (¢*~! —1)(g" —
1). There are maximal tori T(4,-2) of order (¢"! — 1)d~! and T(4,1) of order
(" —1)/{(g—1)d. Let p € w(T(X')) — mp where X' = A,_; or A,_9. Let P be a Sylow
p-subgroup of T(X). Then dg(2,p) =1 or P is a Sylow p-subgronp of G. Since P is
abelian, Theorem 1 holds true for G = PSL(n,q), n > 4.

Suppose that n = 3. Then |G| = ¢®(¢® — 1)(¢* = 1)d™" and there are three classes
of maximal tori of orders

(-1, (¢ -1)d, (¢ +q+1)d".

We note that a torus of order (42 + g 4 1)d=! is an isolated subgroup. If ¢ > 4, then
de(2,7) = 2for r € w(g+1). Let R be a Sylow r-subgroup of G. Then R is contained
in a maximal torus of order (g2 —1)d™'. Il ¢ = 4, then G = L;3(4) and |G| = 25.32.5.7.
If g =2, then G = L3(2) and |G| = 23.3.7. We have verified Theorem 1 forn=3. It
is trivial that Theorem 1 holds true for PSL(2, g).
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Theorem 3. Let G be ¢ simple group of Lic type and T a mazimnal torus. Let p €
7(T) — mo. Then T contuins a Sylow p-subgroup of G.

Theorem 3 is a corollary of Theorem 1. Actually we prove Theorem 3 for specified
tori when we verify Theorem 1 for the simple groups of Lie type.

Remark. Suzuki[12] determined the structure of (CIT)-groups. A (CIT)-group is a
finite group of even order in which the centralizer of every involution is a 2-group. His
theorem implies that if p is an odd prime, then a Sylow p-subgroup of a (CIT)-group
is always abelian. This means that if a finite group G of even order contains a non
abelian Sylow p-subgroup for odd prime p, then G is not a (CIT)-group. Suzuki’s
theorem, however, appears not Lo give us any information as to whether any non
abelian Sylow p-subgroup of a finite group of even order always contains a non trivial
element which commutes with an involution.
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Some Formulas for Spin Models on Distance-Regular Graphs

Brian Curtin and Kazumasa Nomura

Abstract. A spin model is a square matrix W satisfying certain conditions which ensure
that it yields an invariant of knots and links via a statistical mechanical construction of
Jones [11], By a recent result by Jaeger-Matsumoto-Nomura [10], for every spin model
W, there corresponds a Bose-Mesner algebra N(W) which contains W. Here we consider
the case that N(W) is the Bose-Mesner algebra of a distance-regular graph. Actually
we will assume W € A C N(W), where A is the Bose-Mesner algebra of a distance-
regular graph I'. Under this assumption, we will show that the following numbers can
be represented by two parameters: the entries of W, the eigenvalues of the graph I, and
the intersection numbers of I

Set X = {1,...,n} throughout.

1. Preliminaries
1.1. Spin Models

Definition (Jones [11]). A spin model is an n x n matrix W with non-zero complex
entries such that (for all a, b, c € X):

W(z,a)

= ifasb.
1 W(z,a)W(z,b)  W(a,b)
@ AL TWeo - WeoWey

Remark. One obtains an invariant of knots (links) from each spin model.

Remark. Equation (2) with b = ¢ implies

zex

So W(b,b) = a is a costant, called the modulus of W.
Remark. Jones assumed that W is syminetric. The above definition was obtained

by Kawagoe-Munemasa-Watatani [12]. A further generalization (called 4-weight spin
models) was obtained by Bannai-Bannai [1).
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1.2. Association Schemes and Bose-Mesner Algebras

For more precise information about association schemes, the reader is referred to [3].
A d-class association scheme on X is a partition

XxX=RyURU---URy, R, #0

such that

(1) Ry ={(z,2)|z € X},

(2) Foreveryi€ {0,...,d}, there exists i’ € {0,...,d} such that R; = {(y,2)|(z,y) €

R:},
(3) There exists integers pf; (i, 7, k € {0,...,d}) such that, for every (z,y) € R,,
P.g,' =#{z€ X|(z,2) € R, (2,9) € Ri}'

() #i; =rk

pf’. are called the intersection numbers.

An association scheme Ry, ..., Ry is symmetric if every R; is a symmetric relation (i.e.
i’ = i for every 1).

Let Ry, Ry, ..., R4 be an association scheme on X. Let A; be the adjacency matrix

of R;;
_J1 if(zy)eR;
Ai(z,v) = { 0  otherwise.
Observe that 4
A.‘Aj = A,‘A.‘ = lzopfj/h..
Hence the linear span A = (A, A,, - . ., Aa) is a commutative subalgebra of M,(C), with
identity Ag = I. A is called the Bose-Mesner algebra of the association scheme.
Let Ey, E), ..., E4 be the primitive idempotents of A. Then E;E; = 6;E; for 1,
j=0,...,d Wehave J € A (all one’s matrix), since J = i, A;. Hencen™'J isa
primitive idempotent of .A. We always choose notation so that Eq = n~1J.

Now we have two linear basis of A: Ay = I, A, ..., A, (adjacency matrices),
Ey=n"'J, E,, ..., E4 (primitive idempotents).
Write

d d
A= Z PjiEj, E; = n! Z Q,','Aj.
=0 j=0

The matrices (of size d + 1) P = (Pj;) and Q = (Qj;) are called the eigenmatrices of
A
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V = C" splits into direct sum
V= EoV (3] E;V DD E,jV,

and E; : V — E;V is the projection. Observe that Pj; is the eigenvalue of A; on the
eigenspace E;V. Clearly we have A;E; = P;E; (1,5 =0,...,d).
The entries Q;; of @ are called the dual eigenvalues.

A is closed under Hadamard product Ao B, since A; 0 A; = §;;A;. Thus A becomes
an algebra under Hadamard product, with identity J.

A duality of A is a linear bijection ¥ : A — A which satisfies (for all A, B € A)
V(AB) = ¥(A)o¥(B), ¥(AoB)=n"'w(A)¥(B), ¥(¥(A)=nA

When A has a duality, A is said to be self-dual.
A duality ¥ maps {E;|i = 0,...,d} onto {A;|i = 0,...,d}. We may choose the
ordering of Ey, ..., E4so that ¥(E;) = A; (i =0,...,d). In this case the eigenmatrices

satisfy P = Q.

1.3. Algebra N(W)
Let W be a spin model on X. For b, ¢in X, let Y. be a vector € C" with entries

W(z,a)

Yic(=) = W(z, b)

(z € X).
Let N(W) be the set of matrices A € M, (C) such that Y}, is an eigenvector of A for
all b, ¢ € X. Define a mapping ¥ : N(W) — M, (C) by

AY. = V(A)(b)Yie (A€ NW), bce X).

Theorem A (Jaeger-Matsumoto-Nomura [10]).
(i) N(W) is a Bose-Mesner algebra.
(ii)) W e N(W).

(iti) N(W) is self-dual with duality ¥.

(iv) Y(A) =a "W o (‘W-(‘W o A)) for all A € N(W), where o denotes the modulus
of W and W~ is defined by W= (z,y) = W(y,z)"".
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Let Ry, ..., R4 be an association scheme with the corresponding Bose-Mesner algebra
A such that W € A C N(W). Since W € A, W is a linear combination of the adjacency
matrices A; of A; W = E:-Lo t;A;. By the definition of W-, W~ = E?:o t; 14, € A

Lemma B. ¥(A) = A. In particular, A is self-dual with duality ¥| 4.

Proof. We have W, W~ € A. Observe that A is closed under matrix product,
Hadamard product and trasposing operation. Hence, for all A € A,

H(A) = "W o (‘W (W o 4))
belongs to A. This shows ¥(A) C A. 0

Let Ey, ..., E4 be the primitive idempotents of .4, where we choose the ordering so
that ¥(E,) = A, (h=0,...,d). Then, for (b,c) € Ry,

E;.ch = \I’(Ej)(b, C)ch = A;.(b, C)ch = ch.

Lemma C. For allb, c € X, AYse = PiiYse (1 =0,...,d), where h is the indez such
that (b,c) € Ry,.
Proof. From the above, we have E,Y,. = E,. Hence AY,. = A;E,Y;.. Using

AiE, = PyEn, A;ELYse = PuiBLYie. Using ELYi. = Yi again, we obtain the result.
0 Status: RO

1.4. Distance-Regular Graph

For more precise information about distance-regular graphs will be found in [4).
Let I' = (X, E) be a connected graph of diameter d (undirected, without loops and
multiple edges). T is distance-regular if the relations

Ri={(=z918(z,y) =i}  (i=0,...,d)

form a (symmetric) association scheme.

It is known that the intersection numbers pfj are determined by the numbers ¢; =
Pii-1» @ = pi;, and b; = pi;,,. Clearly by = k is the valency and ¢; + a; + b; = k,
cg=ag=0,c) =1, by = 0. The intersection array of I' is

{bo,b1,...,ba-1; €1,02,...,¢c4}.

Let [ be a distance-regular graph of diameter d, and let A be the corresponding Bose-
Mesner algebra. Let A; be the adjecency matrices, E; be the primitive idempotents,
and P, @ the eigenmatrices. Observe A; are symmetric, so that all matrices in A are
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symmetric. Thus the eigenvalue P;; of A; on E;V are real numbers. This implies Q is
also a real matrix. The eigenvalues §; = P;, of A, on E;V is called the eigenvalues of
I.

It is known (and not difficult to show) that there exist polynomials v;(z) (i = 0,...,d)
of degree ¢ such that A; = v;(A;). This implies

Py = ”:'(01') (")J =0,...,d).
This property is called the P-polynomiality.
The dual eigenvalues of I are defined by
6; = Qj (F=0,...,4).

I' is Q-polynomial if there exist polynomials v{(z) (i =0,...,d) of degree ¢ such that

Qji = v{(6;) (i,7=0,...,d).

Now suppose that the Bose-Mesner algebra A of T' is self-dual. In this case, we have
P = Q. Hence I' is necessarily Q-polynomial with 6; = 6;.
We will use the well-known reccurence:

10; = ¢;0;—1 + a;0; + b:fiy1.
Writing a; = 8p — b; — ¢;, this becomes

(01 — 60)8; = c;(6:-y — 8;) + b;(8iy1 ~ 6;).

2. Result and Proof

Theorem 1 LetT = (X, R) be a distance-reqular graph of diameter d > 2 with inter-
section numbers ¢;, b; (0 < ¢ < d). Let Ay, A, ..., Aq denote the edjacency matrices
and let A denote the Bose-Mesner algebra of TI'. Let W be a spin model such that
WeAC NW). Write W = T2 t;A;, and set z; = tit7), 1 <i<d), =2z, and
p=z7'z,.

(i) z; =p* 'z (1 <i<d).

(ii) Suppose z® # 1. Then the intersection numbers ¢; (0 < i < d) and b; (0 < i < d)
of I' are given by

Pz = )2 - 1)z 4+ 1)(ptti-2z2 —1) [ 5
1z + 1)(pdz? - 1)(p—1z - 1)(p®-122 - 1) L
= PO=2)ez? - 1)@la? - 1)ttt 1) [d -

' z(pd-1z + 1)(pdz? - 1)(p'z — 1)(p%-122 ~ 1) 1 !

where

il _[1 ifp=1,
1 , - %{- otherwise.
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On the other hand, the w-entry of the right side of (1) is 8x¢,t;!. Hence (2) holds.
Equation (3) is proved similarly using Y, in place of Y,,. (]

Set _
T =it (1<i< D).

Lemma 8 Forallr (1<r < D),
0, = Crz:l +a; + beZry1, (4)
70, = ¢z, +ar + bz, (5)

where zp4) is an indeterminant.

Proof. Apply Lemma 2 with w = v and simplify. O

Lemma 4 Forallr (1 <r < D),

1 1

T, —z, T -z

1 =0, Bo—01

Proof. Use Lemma 3 and the 3-term recurrence. O
Corollary 2 With the above notation

1. Ifz? =1 for somer (1 <r < D), thenz? =1 foralli€ {l,...,D}.

2. Ifz,zq1 =1 for somer (1<r<D—-1), thenz? =1 for alli € {l,..., D).
Proof. Use Lemma 4 and the fact that the eigenvalues are distinct. o

Fix r (1 < r £ D), and pick vertices z, y, z such that 3(z,y) =r -1, 8(z,2) = r,
8(y,2) = 1. Write

7 = [Praa(2) NTy(y) N Ta(z)].

Fact: 4 depends only upon r, not the choice of vertices z, y, z. We will thus
sometimes write 4, for this number.

Lemma 5 Fizr (1 £ r £ D), and pick vertices z, y, z such that 8(z,y) = r - 1,
(z,z) =1, 8(y,z) = 1. Write

7 = |Leoa(z) N Ti(y) NTa(2)].

Then
v(z2 = 1)(zr — 1) = 210, — 226, + 2, (2122 — 1) + ay 2. (22 - 1), (6)
yzi(z2 — 1)}(2r — 1) = 2220, <1 — 232,60, + 1| — 2122 + a1z (1 — 23), (7)
yz1(z2 — 1)(2r — 1) = 220, — 210y + 2,(1 = 2122) + a1 21(1 ~ 22), (8)
1(z2 — 1)z, — 1) = 212,60, — 222,0,—1 + 2172 — 1 + a12,(z2 — 1), (9)
¥z1 + 1)(z2 — 1)(zr — 1) = aa(z2 — 1)z — 21), (10)
6r(z2 + 212,) — Or—1(Z1 + 222,) = (z122 — 1)(2r — 1). (11)



Proof.
Proof of (6): we apply Lemma 2 withu =z, v=z,w=y,and h=r.

v(z2 = 1)}{zr —1) = z10,-1 — z20;
+:l:,-(:|:1:l:2 - l) + alzr(32 - l)'

Takeu =z, v=12,w=y,and A =r in Lemma 2, and set D;- = D}(z,z), and observe
that y € DI™!. Now e(y, D) is zero except for

j_\i r-—-2 r—1 r
2 Cr-1 o1 =7 | b1 =1=(a1-7)
1 v a1-v
0 1

Therefore (2) implies that

Octenrti' = coortecaty! + (aroy — V)terty!
+(beay — 1 —ay + 7)tt5"
+(a1 = 7ttt + yteatyt + et

Multiplying both sides by tat;};, this becomes

220, = —vy(z2—-1)(z, 1)
+(C,-_1:l::_11 +a,1+b —lzr)
+z0(z122 — 1) + 012, (z2 ~ 1).

By (4) ¢;—127), + ar—y + b,—1Z, = 210,_;. This substitution yields (6).

(7) is obtained in a similar way.

To prove (8) and (9), apply Lemma 2 withu =z, v=y,w=2z,h=r—1.

(10) is obtained by adding (7) and (8), and (11) is obtained by subtracting (6) from
(8). (]

* This is enough to treat the case p? = 1, where p = z3/z,.

1. If p=1, then z; = 1 for all s.

2. Ifp=1,z #1,then¢; =1, a; = i{(g—2), b = (d—i)(g—1), where ¢ = =z~ (z—1)%.

3. If p= —1, then 22 =1 and z; = (—1)"'z.

4 ifp=—-landa; =0,thenc;=i(1€i<d),bj=d—-i(0<i<d=1),a;=0
(0<i<d-1).

* This is enough to treat the case p? # 1, ay = 0.
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(pz® — 1)(p¥ 22 + 1)
G 1)
( intermediate computations)

1. z; =p' !z, 6=

2. Either p?~'z2+1=0o0rplz-1=0.
3. If p?-122 + 1 = 0, then

(" + ) (o - %)
pd+i(p2_1)
@? + )% - 1) .

“ = @onEEes OSTED

b oo EERAE -

' pi(p? — 1)(p? + p%) =

b

(0<i<ad),

4, If pz — 1 =0, then

(l - pu—l)(pﬁ-u—l + 1)

6 = P2(p? —1) (0<i<d),
2d-1 - l 2 _ 1 '

“ = p“-(f(pz — 1)(:,(2}:-24_1)_ ") (0<i<d),

b = PO -n0-ph g g

@ - 1)pF-H-1-1)

5. a;=0(0<i<d—~1).

The numbers v, are closely related to the the kite-numbers of Terwilliger. Define

ei{z,y,2) (1 £ i < d) defined for each triple z, ¥, and z of mutually adjacent vertices
by

ei(z,4,2) = |Di_1(=, )| 7!Di_,(z, ¥) N Tica(2)].

Lemma 6 For all triples z, y, z of mutually adjacent vertices, v; = aye;(z,y,2z) (2 <

i < d).

Proof. Fix two adjacent vertices z ,y, and set Dj— = D;'-(:z:, y). Count the number of
pairs (z,u) such that 2 € D}, u € Di_,, and 8(¢,2z) =i —1in two ways. O

The following result by Terwilliger is essential.

Theorem 3 (Terwilliger [18]). Let T = (X,R) be a Q-polynomial distance-regular
graph of diameter d, and let 83, 63, ..., 8} denote the dual eigenvalues of ' with respect
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to a Q-polynomial ordering of the primitive idempotents. Letz, y, z be mutually adjacent
vertices. Then
el'(z: yvz) = QQEQ(I,y, Z) +ﬁl' (2 S i S d))

where
o = (61 —05)(6 + 6] — 67, — 67)
: (65— 03)(0;., —67)
g = 186606 - 07) — (61 - 63)(67 - 67.,)
' (65 — 63)(07_, - 67) '

Fact: The distance-regular graphs such that there is a spin model W € A C N(W)
are Q-polynomial, and there is a Q-polynomial ordering of their primitive idempotents
such that 67 =6; (0 <: < D).

Lemma 7 Suppose p*> # 1. Then
Yr=am+fiar (2Zi<d).
Set
pi =i —z;! (1gigd).
Lemma 8 Suppose p®> # 1. Then for alli (2 < i< d)
(Peri = Picri-1)(p1 + p2)
= pa(pi + pi-1)12 + (P1pi — p2pi-1)an.

* This is enough to treat the case p* # 1, a; # 1.

1. z; = pz*~!.,

2. Compute 6; (0 < i < d) (a long computation): (pz? - 1)x

((P:H-i-lz:! + 1)@4-.‘ -1) +pd—iz(pi-lz + 1)@ - 1))
z(p?1z + 1)(1 - pdz2)(p ~ 1)
3. Compute ¥; (1 < i < d) (now fairly easy):

P(1 = z)(pz? — 1)(p*1z? — 1)(p*i-12? + 1)(p?~F — 1)
z(p? 1z + 1)(p¥2? - 1)(p'z - 1)(p* 22 - 1)(p—1) ~

4. Compute ¢; (1 < i < d) (now fairly easy):

p“l(z - 1)(p.‘£2 - 1)(pd"z + l)(p‘“‘"%’ - l)(pi - 1)
T2+ 6% - )2 - )EF 2 - - 1)
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By using the classification of the finite simple groups, Weisfeiler [W] found
bounds for the orders of finite primitive subgroups of PGL(n, C) that are far better
than any previously known, and indeed than any bounds which have been achieved
without this classification.

As a consequence of his results it is possible to give precise upper bounds for
the orders of the finite subgroups of GL(r, Q), and more generally for the finite
subgroups of GL(n, K), where K is a cyclotomic field. The object of this paper is
to prove Theorems A and B below which describe these bounds.

If ¢ is an even natural number let Q(£) be the cyclotomic field which contains
exactly £ roots of 1. Hence £ =2 if and only if Q(£) = Q.

For any field K of characteristic 0 let M(n, K) denote the group of all monomial
matrices whose nonzero entries are roots of 1 in K. Let M(n,Q(¢)) = M(n,¢).
Thus if K contains exactly £ roots of 1 then M(n, K) = M(n,¢) and |M(n,£)| =
nlé®,

Let ST; denote the unitary reflection group numbered i in [ST, Table VII]. Then

ST3y = Z42%5¢. John Conway has pointed out that it is the centralizer in W ( Eg)
of an element of order 4.

STy = Sp(4,3) x Z3 is the centralizer in W(E3) of an element of order 6.

ST34 =6PSU(4,3)2.

Two finite subgroups G and H of GL(n,C) are isoclinic over C if there is a
bijection from G to H which sends each coset of Z(G) onto a coset of Z(H) and
defines an isomorphism from G/Z(G) to H/Z(H) such that every element of H is
a scalar multiple of the corresponding element of G.

Two finite groups G and H are isoclinic if they can be embedded in a larger
group M such that M is generated by G and Z(M), and also by H and Z(M). See
the ATLAS p. xxiii for a discussion of this concept and the following consequence.

Suppose that G and H are isoclinic. If g : G = GL(n,C) is a faithful irreducible
representation of G, then there erists a faithful irreducible representation
h: H = GL(n,C) such that g(G) and h(H) are isoclinic over C.

The finite primitive subgroups of GL(n, C) for n < 7 have been classified up to
isoclinism by H.F. Blichfeldt, R. Brauer, J.H. Lindsey Il and D. Wales, see e.g. [F1]
for the list of groups, (though John Conway has pointed out that unfortunately the
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group STs; was omitted from the list of 4 dimensional primitive groups). These
lists and Weisfeiler’s results are essential for the work in this paper.

Theorem A. A finite subgroup of GL(n,Q) of marimum order is conjugate to
M(n,Q), and so has order n!2", except in the following cases.

n G |G|

2 W(G-) 22.3=12

4 W(F,) 27.32 = 1152

6 W(Es) x 22 98.34.5 = 103680

7 W(Ex) 210.34.5.7 = 2903040

8 W(Es) 211.35.52.7 = 696729600
9  W(Es) x W(A;), reducible  2!5.35.52.7 = 1393459200
10 W(Es) x W(G1), reducible 216.36.52.7 = 8360755200

Since M(n, Q) = W(B,) = W(Cy), the mazimum order is achieved by a Weyl
group unless n = 6. In any case it is achieved by the automorphism group of a
disjoint union of Dynkin diagrams. In all cases the finile subgroup of marimum
order in GL(n, Q) is unique up to conjugacy.

It should be noted that while every finite subgroup of GL(n, Q) is conjugate to
a subgroup of GL(n,Z), uniqueness up to conjugacy in GL(n, Z) need not hold in
Theorem A. For instance, as B, and C, are inequivalent roots systems for n > 2,
the descriptions of W(B,) and W(C,) in terms of these root systems lead to non-
conjugate subgroups of GL(n,Z).

Theorem B. Let £ > 2 be an even integer. M(n,€) is a finite subgroup of
GL(n,Q(?) of mazimum order except in the following cases where the marimum
order is achieved by the listed group.

¢ n G |G|

4 2 Z4SL(2,3) 29.3=48

4 4 STy, 210.32.5 = 46080

4 5 STy x 2, reducible 212.32.5 = 184320

4 8 STy wrZ, 921. 3. 52 = 4246732800
6 4 STy, 27.35.5 = 155520

6 6 STy 29.37.5.7 = 39191040
8 2 ZsGL(2,3), 26.3 =192
10 2 Zs x SL(2,5) 23.3.52 = 600
10 4 (Zs x SL(2,5))wr2, 27.32 .51 = 720000

10 6 . (ZsxSL(2,5)wrEy  2'°.3%.5% = 1296000000

20 2 Z20SL(2,5) 21.3.5% = 1200

The finite group of marimum order in GL(n, Q(f)) is unique up to isoclinism
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except in the following cases.

£=6,n=2 :  M(2,6) and Z3 x SL(2,3) have order 72,
L=6,n=5 i M(5,6) and STy2 x Zg have order 933120,
€=10,n=3 :  M(3,10) and (25 x SL(2,5)) x Z10 have order 6000,
£=30,n=2 : M(2,30) and Z,5 x SL(2,5) have order 1800.

If G C GL(n,Q(¢€)) and H is isoclinic to G over C then in general H need not
be isomorphic to a subgroup of GL(n, Q(¢)). However, if M(n, §)# C GL(n, Q(¢)),
where M (n, §)# is isoclinic to M (n, £) over C then M(n, £)# = M(n, ¢) is the group
of all monomial matrices whose entries are roots of 1 in Q(¢).

Hence Theorems A and B and Corollary 2.6 below imply

Corollary C. If n > 10 then M(n,£) is a finite subgroup of marimum order in
GL(n,Q(£)), it is unique up to conjugacy. If £ > 2 this is already the case for
n>8.

It should be pointed out that Corollary C does not imply that any two represen-
tations of M(n,£) in GL(n,£) are equivalent. This phenomenon can be explained
by the following observation.

Lemma 1.1. Let f be a faithful representation of a finite group G over Q(€). Let p
be a linear character of G with values in Q(£) such that pf is also faithful. Assume
that the group of scalars Z;, of order £, is in f(G). Then f(G) = uf(G).

Proof. By definition u(z)f(z) € Z¢f(G) for any = € G. Thus
#f(G) = {p(z)f(z) | = € G} C Z:f(G) € (G).

As |f(G)| = |uf(G)| the result follows. O

The notation in this paper is standard in addition to that introduced above.
The details will appear elsewhere.
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We begin with the following:

Theorem A. A finite group G is soluble il and only if {z,y) is soluble for
alz,y€G.

This was first proved by John Thompson [4] as a corollary of his classifi-
cation of the minimal simple groups. A second proof, independent of any
classification theorem, has been obtained by the author [2]. Two possible
generalizations of Theorem A are:

Conjecture B (A characterisation of the soluble radical). Let z be an
element of the finite group G. Then (z€) is soluble if and only if (z,y) is
soluble for all y € G.

Conjecture C (A soluble Baer-Suzuki Theorem). Let z be an element
of order prime to 6 in the finite group G. Then (z€) is soluble if and only if
{z,zV) is soluble for all y € G.

This note describes some ideas which are relevant to these problems.

An obvious approach to B and C is to try to generalize the proof of A.
Unfortunately, this does not work. To see why, we present part of the proof
of A. Firstly recall the

Goldschmidt Lemma. [1, Lemma X.1.6] Let g be a p-element of the
soluble group G. Then

Op(Co(9)) < Oy (G)-
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An important part in the proof of A is

Lemma D. Let G be a finite group in which every two elements generate a
soluble subgroup. Let g be a p-element of G. Then

O0y(Ce(9)) £ Op(G).

Proof. Let ¢ € Oy(Cg(g)) and let y be a p’-element of G. Set H = {cg,y).
Since ¢ and g are commuting elements of coprime orders we have ¢,g € H.
Thus

¢ € HNOp(Cg(9)) £ Oy(Cu(9))-

By hypothesis, H is soluble so the Goldschmidt Lemma implies that ¢ €
Op(H). Now y is a p’-element of H so then ¢y is also a p'-element. Since y
was an arbitrary p’-element of G, it follows that {cC) is a p’-subgroup. Thus
c € Oy(G). a

Note that the proof does require “two degrees of freedom”, hence the difficulty
in extending it to cover the situation in B where there is only “one degree of
freedom”. Some progress is made in [3]. In C, the situation is even worse.

1 Strategy

Conjectures B and C reduce to proving statements of the form
if the group G satisfies ... ... then G is soluble.
A good strategy is to find a method M such that:

e When M is applied to a soluble group G then M returns information
regarding the normal subgroups of G.

e M can be applied to any group G and without any prior knowledge of
the normal subgroups of G.

- We then apply M to groups which satisfy the hypothesis of the statement we
want to prove in the hope of obtaining information regarding their normal
subgroups. Lemma D is a good example of this strategy. The next section
describes another.



2 Large 2-generated soluble subgroups

We aim directly for the Fitting subgroup, which is the most important sub-
group of a soluble group. For a group G and a subgroup P < G define

To(P) = {A < G| Ais soluble and A = (P, P*) for some a € A}.
The set £g(P) is partially ordered by inclusion and we let
Zs(P)
denote the set of maximal members of Zg(P). If ¢ is a prime we let
Z4(P)

be the set consisting of those members A € Lg(P) with |A|y maximal. The
elements of g(P) have the following property:

Theorem 2.1. Let G be a group, let P be a subgroup of G with prime order
p> 3 andlet A€ Ty(P). Then

F(A)YV
is nilpotent for every nilpotent subgroup V of G that is normalized by A.

Recall that w(X) is the set of prime divisors of | X| and that if G is soluble
then Cg(F(G)) £ F(G). Then:

Corollary 2.2. Assume the hypothesis of Theorem 2.1 and that G 1s soluble.
Then

n(F(4)) € n(F(G))-

Thus, when G is soluble, the members of £3(P) give us information regarding
the Fitting subgroup of G. For the members of £%(P) we can say a little
more:

Corollary 2.3. Assume the hypotheses of Theorem 2.1, that G is soluble,
that g is a prime and that A € TL(P). Then

Oqy(A) £ 0,(G)-
However, this is only useful if we know that O,(4) # 1.

Before giving an application of these results, we make some comments about
their proof. Most of the effort in proving Theorem 2.1 goes into establishing:



Lemma 2.4. Let G be a soluble group, let P be a subgroup of G with prime
order p > 3 such that G = (P€) and let V be a faithful and irreducible
G-module. Then

dim Cy(P) < -;- dimV.

This result seems to be quite deep. The present lengthy proof uses Hall-
Higman techniques.

Although the theory developed so far is not strong enough to prove Conjec-
tures B or C, it does easily prove a weak form of C. Thus it seems to be
heading in the right direction.

Theorem 2.5. Let G be a finite group and let x be an element of G with
order prime to 6. If every four conjugates of = generate a soluble subgroup
then (x€) is soluble.

Proof. Assume false and let G' be a minimal counterexample. Then sol(G),
the largest normal soluble subgroup of G, is trivial. Also, we may suppose
that z has prime order p > 3. Let P = (z).

We claim that there exists a prime g such that F(A) is a ¢g-group for all
A € ZH(P). Let A,B € Ty(P), choose g € w(F(B)), let g € G and set
H = (A9,B). Then A¢ € L} (P?) and B € Z}(P). Theorem 2.1 implies
that F(A9)F(H) and F(B)F(H) are nilpotent, whence
Oy(F(A%)) < Cu(O,(H)) S H and O(B) < Cu(Oy(F(H))) S H.
By hypothesis, H is soluble so Cy(F(H)) < F(H). Thus
(O (F(A)), Oy(B)] < F(H).
Consequently; Oy (F(A%))F(H) and O (B)F(H) are nilpotent subgroups of
H that normalize one another. We deduce that (Og(F(A)))® centralizes
Oy(B) for all g € G. Let
K = (0y(F(A))®) and N = N(O,(B)).

Then K 4G and K < N # G. Now P < N so the minimality of G forces
P < s0l(N) and hence

[K, P] < K nsol(N) < sol(K) < sol(G) =1.
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Now G = (P%) by the minimality of G, so as K 4G it follows that K <
Z(G) = 1. We deduce that Oy(F(A)) =1 and then that F(A) is a g-group
for all A € S5(P).

Now choose A € T%(P), let g € G and set K = (A4, A%). Corollary 2.3
implies that {(O,(A4), O4(A9)) < O4(K) so we deduce that {Og(A), Oy(A)?) is
a g-group for all g € G. Now A is soluble so the previous paragraph implies
that Oy(A) # 1. But O(G) = 1 so we obtain a final contradiction using the
Baer-Suzuki Theorem. 0
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Abstract

It is shown that the lifted Golay code over Z, contains several 5-designs. In par-
ticular, a 5-(24,12,1584) design and a 5-(24, 12, 1632) design are constructed for the
first time.

1 Introduction

A t-(v,k, X) design D is a set of v points with a collection of k-subsets called blocks, so that
any t-points are contained in exactly A blocks. A design with no repeated block is called
simple. In this paper, we consider only simple designs. The complementary design of D is
a design obtained by replacing each block in D by its complement. The incidence matrix of
D is the matrix M = (m;;) where m;; = 1 if the j-th point is contained in the i-th block
and m;; = 0 otherwise. Two designs are isomorphic if the incidence matrix of one design
can be obtained from the incidence matrix of the other by permuting its rows and columns.

A fundamental problem in design theory is to determine if there exists a design for
a given set of parameters. Coding theory has made a substantial contribution to design
theory. For example, the Assmus-Mattson theorem [1] determines whether the codewords
of a specified weight in a code over GF(q) form a t-design. In particular, it is well known
that the codewords of weight 8 in the binary extended Golay code form the Steiner system
5(5,8,24), which is the unique 5-(24,8,1) design. Moreover, the codewords of weight 12
form a 5-(24, 12,48) design which is known as the dodecad design. This 5-design is a unique
design for the parameters such that every two blocks intersect in an even number of points
(<f. [20)).

Recently a number of papers have studied self-dual codes over Z4 the ring of integers
modulo 4 (cf., e.g. [2), [3], [5], [6] and the references given therein). Connections of self-dual



codes over Z, with unimodular lattices and binary nonlinear codes have been found. In
this paper, we present a conncetion with desgins. Type II codes have been introduced by
Bonnecaze, Solé, Bachoc and Mourrain [3], as a class of self-dual codes over Z¢. This class
includes the octacode Og of length 8 and the Hensel lifted Golay code of length 24. In
this paper, we demonstrate that certain codewords in the lifted Golay code over Z, form §-
designs. In particular, a 5-(24,12,1584) design and a 5-(24,12,1632) design are constructed.
From [8] and Table 3.37 in [4], these two designs are the first designs with these parameters.

2 Self-dual codes and the lifted Golay code

2.1 Self-dual codes

A code C of length n over Z, is an additive subgroup of Z;. An element of C is called a
codeword. The Hamming weight of a codeword is the number of its non-zero components.
The dual code C* of C is defined as C* = {z € Z}| z-y = Oforally € C} where
z-y=oh +°+++2oyn (mod 4), z = (21,...,2,) and y = (y1,...,¥n). C is self-dual if
C = C*. We say that two codes are permutation-equivalent if one can be obtained from the
other by permuting the coordinates. The symmetrized weight enumerator (s.w.e.) of a code
C over Zy is

swee(X,Y,Z) = Z Xrolely mle) Znale)
ceC

where ng(c), ny(c) and ny(c) are the numbers of 0,1 and 2 components of ¢, respectively.
Any code is permutation-equivalent to a code with generator matrix of the form

I, A B
( 0 2L, 2D ) ! (1)
where A and D are matrices over Z; and B is a matrix over Z,. We say that a code with

generator matrix (1) is of type 45125 (cf. [5]). Every code C over Z; has two binary codes
€ and C® associated with C:

C" = {c (mod2)|ceC)and
co = {%c|c€C, ¢=0 (mod 2)}.

If C is of type 4¥2% then C(") is a binary [n, k)| code and C? is a binary [n, k; + k3] code.
Moreover, if C is a self-dual code of length n and type 4%, then C()) = C®) and C) is a
doubly-even self-dual code (cf. [5]). Our terminology for codes over Z, follows that in [5].

2.2 The lifted Golay code

The lifted Golay code G34 over Z, is defined in [2] as the extended Hensel lifted quadratic
residue code of length 24. Gy is a Type II code constructed from the cyclic code with



generator polynomial
2 4200+ 32°% + 327 + 32+ 325+ 22 + 2 4+ 3,

by appending 3 to the last coordinate of the generator vectors. The s.w.e. of Gy is given
in [3):

W = X™ 4 2™ 4 24288Y'%Z% + 4096Y ! + 61824 XY 122!
+12144X?Y® 2" 4 680064 X?Y'®Z° + 1133440X°3Y*?Z° 4 170016 X'Y2 212
+1700160X4Y6Z* + 4080384 X3Y'227 4+ 765072X°Y® 20 + 680064 X8Y 1422
+4080384X7Y2 2% + 759X8Z'% + 1214400X8Y®Z® + 24288 X8 Y"®
+1133440X°Y 223 4 765072X Y8 Z% + 61824 X1 Y2 Z + 2576 X2 212
+170016 X12Y2Z*% 4 12144 X™MY® 22 + 759X16 28,

The automorphism group of the binary Golay code is the Mathieu group M. In [9]
Chapman shows that the automorphism group of the lifted Golay code is SL(2,23).

Since Gy is of type 412, G = G{%). Moreover GY is the binary Golay code of length
24. Thus the supports of the codewords of Hamming weight 8 form the Steiner system
5(5,8,24). Similarly, the supports of the 2576 codewords corresponding to X'2Z'? in W
form a 5-(24,12,48) design and the supports of the 759 codewords corresponding to X82'®
in W form a complementary design of S(5,8,24). It is shown in [6] that the supports of
the codewords of Hamming weight 10 in the lifted Golay code and certain extremal double
circulant Type II codes of length 24 form a 5-(24,10,36) design. In this paper, we consider
not only the codewords of Hamming weight 12 but also the codewords corresponding to
X'12Y8Z4. These are used to construct a 5-(24, 12,1584) design and a 5-(24, 12, 1632) design.

3 5-designs in the lifted Golay code

3.1 A 5-(24, 12, 1584) design and a 5-(24, 12, 1632) design

We first investigate the 170016 codewords corresponding to X'?Y2Z¢ in W. Let A be a
170016 by 24 matrix whose rows are the above codewords. If v is a codeword corresponding
to X"?Y82Z* then 3v is also a codeword corresponding to X'?Y8Z4, but 2v is not. Moreover

it is easy to see that
B
4= (5, )

where By = (b;;) is an 85008 by 24 matrix over Z,. Now define an 85008 by 24 (1, 0)-matrix
M, = (m;;) where m;; = 1 if b;; # 0 and m;; = 0 otherwise. We have verified by computer
that M, is an incidence matrix of a (simple) 5-(24,12,1584) design.

As mentioned in Section 2, the supports of the codewords corresponding to X222 in
W form a simple 5-(24,12,48) design which is isomorphic to the dodecad design. Let M,
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be the incidence matrix of this design. Then it is easy to see that the matrix

is an incidence matrix for a 5-(24,12,1632) design, however this design may contain a re-
peated block. Let v and w be codewords corresponding to X'?Y®Z* and X'2Z'?, respec-
tively. Assume that v and w have identical supports in M;. Then the codeword v + w
corresponds to X'®Y®, which is a contradiction. Therefore the design is simple.

Kramer, Magliveras and Mesner [8] determined all 5-designs with the Mathieu group
My, as the automorphism group. Thus the automorphism groups of our 5-designs are not
Ma,. Information on simple t-designs is given in Table 3.37 of [4, p. 52]. From this table,
our designs are the first 5-designs with these parameters. Note that the table in [4] misses
some 5-designs in [8].

Since one can easily construct the two 5-designs from the lifted Golay code, to save space
the incidence matrices are not listed here. However the incidence matrices are available on
the world wide web at http://kszaoh1.kj.yamagata-u.ac.jp/harada.

3.2 More 5-designs

Our computer search shows that the supports of the codewords of Hamming weight 13 form
the complementary design of a 5-(24, 11,336) design. Let M be the matrix over Z, obtained
from the codewords of Hamming weight 13. Since the Hamming weight 13 corresponds to
61824X"1Y"2Z in W,
M,
M.
M; (mod2)=| .
M,
Moreover it is not hard to see that the automorphism group of this design is M;. Thus
this design must be isomorphic to the design in [8]. In addition, the supports of the 24288

codewords corresponding to X8Y!€ in W form a complementary design of the Steiner system
S(5,8,24).

3.3 Summary
As a summary, we give 5-designs in the lifted Golay code in the following proposition.
Proposition 1 There ezist 5-(24,12, ) designs for A = 1584 and 1632. The lifted Golay

code contains 5-(24, k, ) designs for (k, ) = (8,1), (10, 36), (11, 336), (12, 48), (12, 1584) and
(12,1632).

40



4 Concluding remarks

It is well known that the block intersection numbers of S(5,8,24) are 0,2 and 4 and the
incidence matrix of S(5,8,24) generates the binary Golay code. We have verified that the
incidence matrix of any of the above eight designs cannot generate a self-orthogonal code
over Z,, as well as the lifted Golay code.

Since the supports of the codewords of Hamming weight 8 form 5(5, 8,24), its automor-
phism group is My4. It'is shown in [2] that the supports of the codewords of Hamming weight
10 form a 3-(24,10,360) design and PSL(2,23) acts on the design. This design is also a
5-design. Let S be the set of the codewords of Hamming weight 10, then § (mod 2) is the
5(5,8,24). Kitazume [7] shows that the automorphism group of the design is PSL(2,23)
using properties of the design and S(5, 8,24).

Now we give an observation of the extremal Type II codes in [6] such that the supports
of the codewords of Hamming weight 10 form 5-(24,10,36) designs.

Proposition 2 Let D be a double circulant code of length 24 such that D) = D), DU s
the binary Golay code and D has the same symmetrized weight enumerator as the lifted Golay
code. Then the supports of the codewords of Hamming weight 10 in D form a 5-(24, 10, 36)
design.

We conjecture that the above proposition is ture for a code satisfying the condition. In
general, we prompt the following question:

Question. Is there a result analogous to the Assmus-Mattson theorem for a code over Z4?
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Some Highly Symmetric Chamber Systems
D. G. HicMaAN

8/26/97

ABSTRACT. After a review of some basics about chamber systems, a
list is presented of some chamber systems whose full automorphism groups are
transitive on the chambers and have a subgroup acting as the symmetric group
on the types.

l. CHAMBER SYSTEMS

We begin by reviewing some basics about these structures which were introduced in
[3T). A chamber system C = (Q,{E;|i € I}) over 1, or of type I, consists of a set
Q of elements called chambers, and a family {E;|i € /} of equivalence relations on
2, which, in the setup and terminology to be used here, turn out to be the mazimal
parabolics of C. The type of C is I and the rank is |I|. Wrile V; = Q/E; and put
V = Uie/Vi. The chamber systems considered here are assumed to satisfy the two
conditions:

(C1) the sets V;, i € I, are pairwise disjoint;

(C2) if J is a nonempty subset of I and {z;|j € J} is such that z; €V; and
zjNzxy # Bforall j, k € J, then |Njesz;| = 1 or 2 2 according as J = [ or
J # I

The type function 7:V — [ is defined by 7-!(i) = V;. For J C I, a J—simplez,
or simplez of type J, is defined to be a set {z;|j € J} such that z; € V}, j € J,
and Nje,z; # 0. Associated with C is the simplicial complex K = (V, S, 7,1) over ],
with vertices V and simplices S, where S is the set of all J-simplexcs, J C I. The
elements of V; are the vertices of type /.

Incidence of z and y in V, written z * y, is defined to mean z # y and x N y #-0.
The geometry over I, or of type I, associated with C is G = (V, %, 7, I). In Lhis context
the clements of V are called varieties and the elements of V; are the varieties of type
1.

It is a consequence of (Cl) and (C2) that C, K and G are equivalent, namely,
assuming (C1) and (C2):

(1) The top simplexes of K are the /-simplexes. An isomorphic copy of C.is
recoverexl from C by taking as chambers the top simplexes of K and defining the i-th
equivalence relation to consist of the pairs of these with the same vertex of type i;

(2) A flag of G is a set of pairwise incident varieties, and the {ype of a flag (or more
generally of any set of chambers) is the set of types of its varictics. The J-simplexes
of K are the flags of type J of G, which means that X is that flag complex of G. O
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The geometries over / arising here are characterized by the property that every
nonmaximal flag lies in at least two flags of type /. We will pass freely between a
chamber system and its interpretations as a simplicial complex or geometry.

A further consequence of (Cl1) and (C2) is that the mapping J — E; = N;e, Ej,
J C 1, is an anti-isomorphism of the lattice of subsets of I onto a sublattice £(C) of
the lattice of equivalence relations on §). The equivalence relations £ will be referred
to as the parebolics of C, thus the original E; are the maximal parabolics.

Associated with a chamber system C are additional chamber systems called its
residues and truncations. Given a nonempty, proper subset J of I and a nonempty
subset X of V; = /E,, there is the chamber system C*X having as its set of chambers
the set X and as its maximal parabolics the equivalence relations induced on X by the
parabolics By}, i € [ ~ J. The chamber system CX, which inherits the conditions
(C1) and (C2) and has type / — J, will be referred to as a residue ¢f C of type [ — J.
Its: lattice of parabolics £(C¥) is isomorphic with the interval [@, E] of the lattice
of parabolics of C. In addition we have the chamber system C, having V; as its sct
of chambers and the equivalence relations induced on V; as its maximal parabolics.
Again the conditions (C1) and (C2) are inherited, and this time the type is J and
the lattice £(C,) of parabolics is isomorphic with the interval [E;, Q x Q] of £(C); C;
will be referred to as the truncation of type J of C.

In the geometry G, X € V, can be identified with the set of all maximal flags
conlaining a given flag F of type .J. The geometry associated with C¥ can be identifiex]
with the set of varieties of G incident with every variety of F, with incidence induced
by incidence in G. The truncation of C modulo J can be interpreted as the geometry
obtained from G by deleting the varieties of Lype not in J.

By a diagram A over [ is meant the complete graph on I with cach edge {i, j}
labeled by a class c;; of rank 2 geomelrics. A geometry over / satisfies A if, for cach
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i # j, all of its residues of type {1, j} belong to the class ¢;;. Buildings, and more
generally SCABS and GABS, satisfy diagrams labeled by generalized digons, trian-
gles, hexagons and octagons, which are rank 2 geometries conventionally represented
respectively as in Figure I(a). Additional labels will arise here, namely sd (symmetric
designs), gsd (quasisymmetric designs), srdl and srd2 (strongly regular designs of the
first and second kind) [DGH]. For cxample, the building of type D4(q), satisfying
the diagram of Figure 2(b), has truncation of type {1,2,3} satisfying the diagram of
Figure 2(c). The rank 2 residues of the truncation are isomorphic with the symmetric
2—(+¢*+qg+1,9*+g+1,g+1) design of points and planes of PG3(qg).

2. AUTOMORPHISMS

An automorphism of a chamber system C = (Q,{E;|i € 1}) is an clement (0, a)
of Sym(Q) x Sym() such that oE; = E,;) for all i € I. An automorphism (¢, c)
will be called a collineation if a = 1, and a correlation if it is either the identity or
not a collineation. The group Aut(C) of automorphism of ' acts on / according to
Aut(C) — Sym(l), (o,a) — «, and the kernel of this action is the gronp Aut,(C) of
collineations.

Below we list the examples that we know of chamber systems of rank > 3 for
which the sequence
(*) 1 — Aut,(C) — Aut(C) — Sym(I) — 1
is split exact, i.e., for which there is a group § of correlations acting (faithfully) as
Sym(I) on 1, or equivalently, Aut(C) = Aut,(C) : S, S = Sym(1). The concition (*)
is inherited by residues and truncations. As geometries, rank 2 examples are simply
rank 2 geometries with a polarity, and these are plentiful. Here we are intercsted
in rank 2 examples only in so far as they occur as rank 2 residues of higher rank
examples.

Given a subgroup B of a group G there is an isomorphism of the lattice of sub-
groups 1 of G containing B onto the lattice of G-invariant equivalence relations on the
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transitive G-set §) = G/B which maps H onto E = {(zB,yB) € QUQ |z 'y € H}.
The inverse maps the G-invariant equivalence relation £ onto H = Stabe(E(B)). The
examples in the list are all instances of the following situation. There is given a group
G and a family {P]i € 1} of subgroups of G, and we put B = N;e; F;. The chamber
system is C= (Q, { E; |i € I}), where = G/B and E; is the G-invariant equivalence
relation on €2 corresponding to ;. The mapping V; = Q/E; — G/ P, E;(zB) v zF;,
is an isomorphism of G-sets. In each of the examples we have
(**) for each nonempty subset J of 1,

() if {X;]7 € J}, X; € G/P;, is such that X;nX; # @ for all j € K, then
NjesX; # ¥;

and

(i) if J # 1, then Ny, P; # B.
Because of the isomorphism of V; onto G/F; and (ii) of (**), condition (C1) holds,
and because of (**), (C2) holds. The group G acts as a group of collineations of C,
transitive on the chambers and hence flag-transitive on the corresponding geometry.
In each of the examples there is a subgroup S of Aut(G) which acts faithfully on
{C:|i € I} as Sym({) acts on I, where C; is the conjugacy class in G of P;. Therefore
(*) bolds. The subgroups P; = Nje,; P;, J € I, which correspond to the parabolics
E; of C, can be called the parabolic subgroups of G relative to C, and B = P; the
Borel subgroup of G relative to C. We write P,; for P;N P;, and similarly for P;j, etc.
Each row of the list gives the isomorphism class of the group G, of the parabolics
P, P, ..., and of the Borel subgroup B, and finally the class of the rank 2 residues
(of course all of the rank 2 residues in each example are isomorphic because of the
existence of S).

Examples

(1) Us(5) Ay Ly(2) Fy sd
(2) 05 (2) ¢ : Lg) " :Ls(g) FH¥7:GLy(g) sd
(3) O (2) Ay Ly(8):3 Dyy:3 srdl
(4) 2°: Ly(d)  Ls(4) As 32:2 srdl
(5) Us(2) Mz Ay (A4 x3):2  srd2
(6) ©E5(2) Fig 0:(2) 3B:U(2):2  srd2
(7) 2E4(2) F(2) 3D (2) 72: (3 x 24,)

B)OF(3) OF(2) 2:Li(2) 2%3:Ly(2) 2BP2CLy(2) sd
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Examples (1) through (7) have rank 3 and (8) has rank 4. Except for (6) and
(7) each of the examples has been constructed explicitly on Magma. Example (2)
is classical triality. Example (7) is the case m = 0 of a family with G = 2E;(2).
Example (8) is the truncation of type {1,2,3,4} of the first member of Kantor’s
family belonging to the diagram of Figure 3(a) [WK]. Its rank 2 residues are sd’s.

Here are some more details about (4) and (5). These are respectively the rank 3
residue of type {1,2,3} and the truncation of type {1,2,3} of a chamber system D
of rank 4 satisfying the diagram of Figure 8(b), with

G= U6(2) and Aut(G) &= Ss;

P| = Pz = P; = A‘[n and P( =99 L3(3),

Py & Py = Py = Ayand Py = Py & Py & Ly(4);

Py & (A x 3) : 2 and Pygy & Pygy & Py & Ag;

B=32:2

(see Figure §).

For this chamber system the permutation action of G on (the varieties of) D has type

8 6 6 4

8 g i . |. Thus the type of the permutation action of G on the truncation

4

8 6
of D of type {1,2,3} is 8

oo,

). The type of the permutation aclion of P; =
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My,i = 1,2,3, on the corresponding rank 2 residue of this truncation is ( 3 g ),

80 these rank 2 residues are srd2’s.
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An Improvement of the Ivanov Bound

Akira HIRAKI * and Jack KOOLEN 1

1 Introduction
For definitions and information about distance-regular graphs we would like to refer to
[l],l!i]t: I’ be a distance-regular graph with valency k, diameter d and define r :=
max{ i | (c,b) = (a,41) }. A. A. Ivanov [5] showed the diameter bound

d < 4.

In this note we will show the following improvement of this bound.

Theorem 1.1 Let T be a distance-regular graph of diameter d, valency &k and r =
max{i|(ci, &)= (c1,81) }. Then

d< %kar.

2  Proof of Main Result
We introduce only the outline of our proof.
Let T be a distance-regular graph. Define
nei=|{ilci=c}| and & :=min{i|q2c].
Lemma 2.1 Let ¢ > 1 be an integer. Then n, < 2. — 3.
Lemma 2.2 [7] If ¢t > ¢, then ¢ 2 ¢citc-; forall 1 <i<t—1.
Proposition 2.3 Let ¢ be a positive integer. If 5. # 0, then £ < %m +1.

Proof. We prove our assertion by induction on ¢. The assertion is true for ¢ =2 as
é2=m + 1. We assume ¢ > 3.

*Division of Mathematical Sciences, Osaka Kyoiku University, Kashiwara, Osaks 582, JAPAN.
1Graduate School of Mathematics, Kyushu University, Fukuoka, 812, JAPAN
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Suppose 2
7#0 and {2 m+2

Lo derive a contradiction. Let £ := &, ¢ := [£/2], @ := ¢ and 8 = {,. Lemma 2.2 implies
¢ 2 ¢, + ¢, 2 2a. From our inductive assumption,

aﬁ C’
3={aSTﬂl+IS'IE'h+1-

From Lemma 2.1, we have

84+9, £3-3=4(s-1)+1-8 < ?r)l-i-l—s < §-s

Thus we have B:=¢,> a and {+1 < {s. Hence
m S 4(€-2) < 8t S 8(6p-1) S 28m
from our inductive assumption. This implies ¢ < v28.
On theother hand t < s 47, —1 <35 -4 from Lemmma 2.1. Hence we have
¢
4

This implies ¢ < V6a.
By Lemma 2.2 we have

2
m<E-2<2-1<6(-1) < 65m.

c=c¢c 2t =atf > %-&-% >c
This is a contradiction. u

Theorem 2.4 Let I’ be a distance-regular graph of diameter d, valency k > 2 aend
m:=|{ile=1}| Then

1.2
d < 2L M.
Proof. Let c¢:=c4. Il 2¢ £ k, then Lemma 2.1 and Proposition show thatl

_ c 3 k., 1,,
d={+n.-1<3-1) <Izm < 25)Pm < .

If k<2, then b < k—¢ < c; which implies

& 1
d < 2%, < 271}1 = Ekzm.

The assertion follows. M

Proof of Theorem 1.1. A. V. Ivanov has proved 7 < kr ( See [2, Theorem 5.9.9] ).
Using this, Theorem 1.1 is a direct consequence of Theorem 2.4. [
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3 Conclusions

With a much more complicated argument we are able Lo show the following improvemen
of Theorem 2.4:
there are constants C and ¢ with 0.5 > £ > 0 such that

d < Ck**y,.
Therefore we conjecture
Conjecture 3.1 There is a constant C such that d < Ckny,
A related conjecture is a conjecture by Hiraki.
Conjecture 3.2 ( Hiraki [4] ) There is a constant C such that 9, < 2r +C.

This conjecture is true whenever r# 1 and ( a; #0 or r Z0 (mod 3) ). [3, 4].
If both previous conjectures are true then this will solve an conjecture by A. V. Ivanov
up to a constant.

Conjecture 3.3 ( A. V. Ivanov [6] ) d <2(r + 1)k.
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On association schemes with a nonsymmetric
relation of valency 4

Mitsugu Hirasaka
1997.11.13

Abstract

Let (X,G) be a primittive commutative association scheme with
a nonsymmetric relation of valency 4. Then the cardinality of X is a
prime to the third.

1 Introduction

Let (X, G) be a primitive commutative association scheme. The following
results are obtained until now.

1) 3g€ G* st. k; =1 = |X| = p where p is a prime.

2) 3g € G* s.t. k, =2 = |X| = p where p is an odd prime.

3) 3g € G* s.t. k=3 = |X| = p = 1(3),p* where p is an odd prime
more than 3, |X| = 4,10,28,102 if g = ¢°.

Although it is trivial to prove 1),2), it is rather difficult to prove 3), whose
proof is given by N. Yamazaki (See [11]) when g = ¢°, and by the author
(See [9]) when g # ¢°.

In this paper, we treat the case that there exists ¢ € G such that &, =
4, g # g°. The following is the main theorem, which in particular gives a
restriction on the X.

Theorem 1.1 Let (X,G) be a primitive commulative association scheme
with & nonsymmetric relation of valency 4, denoted by g. Then the graph
(X, 9) is isomorphic to the cubical graph, which is described in Ezample 2.11.
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2 Preliminaries

Definition 2.1 (Association scheme) Let X be a finite set and G be a
partition of X x X, not containing the empty set. The pair (X, G) is called
an association scheme if the following conditions 1), #3), i7) hold;

i) Ix:={(z,2)lx € X} € G
i) Vg€ G, ¢ :={(z.y)llv.z) €9} €C
iif) Vg, h,l € G,Vz,y € X with (z,y) €,
I{z € X|(z,z) € g,(z,¥) € h}| depends only on g, k,!. We denote it by
P, which is called an intersection number.
(X, G) is said to be commutative if it satisfies condition iv);
iU) Vgl h)l € G)p_lqll = plh_q'
(X, G) is said to be symmetric if it satisfies condition v);
v) Vg€ G,g" =g

For each element ¢ € G, we define the adjacency matrix A, whose entries
are indexed by elements of X as follows;

_J1 if(z,y)€eg
(Ag)ey == { 0 otherwise

Note that there exists a one-to-one correspondence between G and {A,},ec.
Using adjacency matrices, we can express the conditions 1), - - - ,v) as follows;

i)' Ayx = I where [ is the identity matrix.
i)' Vg € G,3¢" € Gst. A, = AL,
iit) Vg,h € G, AgAn = Tiec Pyt
iv)’ Vg,h € G, AjA) = ALA,.

v)' Vg € G, A} = A,.

From now on we identify A, with g for each ¢ € G for convenience, and
denote the ordinary product of matrices A, B by A ¢ B in order to avoid
confusions.

Definition 2.2 Let (X, G) be an association scheme. Let A be a subalgebra
spanned by {g|lg € G} of the full matrix algebra of order |X| over complex
field. We call A the Bose-Mesner algebra of (X, G).



Definition 2.3 We call an element g of G a relation, and a symmetric rela-
tion if ¢* = g, a nonsymmetric relation if g°* # g.

Definition 2.4 For each subsets E, F of G, we define
EF:={ge G| Y o #0}

e€E JeF

In particular, for each e, f € G, we denote {e}{f} by ef.
Definition 2.5 For each g € G and z € X, we define zg := {y|(z,y) € g}
Remark 2.6 {z € X|(z,z) € 9,(z,y) € h} = zgNyh*

Definition 2.7 For each g € G, we define k, := p;;," , which is called the
valency of g. '

Note k;, = k, and k, = |zg| for each z € X.

Definition 2.8 Let V be a finite set and E C V x V. We call the pair (V, E)
a graph.

Definition 2.9 A graph (V, E) is connected if, for each u,v € V, there exist
v =u,v;, -+, % = v € Vsuch that (v;,v;y;) € Eforalli with0 <i<t-1.

Definition 2.10 Let (X, G) be an association scheme. We say that (X, G)
is primitive if the graph (X, g) is connected for each g € G* := G — 1.

Example 2.11 Let F, be a finite field of order p where p is an odd prime.
We define permutations on F? as follows;

1) Let S3 be the symmetric group of degree 3. For each (z;,z3, z3) € F:
and 0 € 53,

(31,32, 33)" = (%' (1)1 Zat (2): Ta? (3))-
2) For each (z,,%2,23) € F},

(71, 22, 23)7 := (=21, 22 — 71, Z3 — Z31)-



3) For each u,v € F?

,I,
v=uto.

Then the permutation group I :=< 83,7, F3 > acts on F:' transitively, and
T acts on F32 x F? by (u,v)? := (v9,19) where (u,v) € Fax F),g€T. Let G
be the set of orbits of T on F? x F3. Then (F",', G) is an association scheme
(See [2, 52]), and it can be venﬁed that (F3, G) is a primitive commutative
association scheme with a nonsymmetric relation of valency 4. Indeed, the
orbit g containing ((0,0,0), (1,0,0)) is a nonsymmetric relation of valency 4.

Definition 2.12 Let (X, G) be an association scheme, and z,y € X. We
denote the element of G containing (z,y) by r(z,y).

Lemma 2.13 Let (X, G) be an association scheme. For each g,h,l € G, we
have the following;

(i) kgkn = Tieg Pk
(ii) p’yhk' = pl’h ky = P: lkh-
Proof. See [2, 56].

Definition 2.14 Let (X, G) be an association scheme, and A be the Bose-
Mesner algebra of (X, G). We denote the inner product on A by (, ) which
has an orthogonal basis {g|g € G} and (g,¢) := k, for each g € G.

Remark 2.15 Let (X,G) be an association scheme. For each g,h,l € G,
we have (g o h,l) = (g,h* o l) by Lemma 2.13(ii).

Lemma 2.16 Let (X,G) be an association scheme. For each g,h,l € G, we
have the following;

(£) Yem(ky, ku)|phyki where lem(ky, ki) is the least common multiplier of
ky ang ky,.

(%) ged(ky, ki) > |gh| where ged(ky, ki) is the greatest common divisor of
k, ang ky,.

Proof. See [3].



3 Outline of the proof

We assume that (X, G) is a primitive commutative association scheme with
a nonsymmetric relation of valency 4, and assume

min k, = 4. (1)

We give some propositions without proof.

Proposition 3.1 For each g € G with k, = 4 and g* # g, there exist
a,b, f,h,m € G such that

1) gog=2a+bk, =6k = 4.

9) gog® =4-1lx +h,k, = 12.
3)aea*=6-1x+2h+ f,k;=6.
4) a=a',gea=3g9"+m,k,=12.
5) gangb={m}.

Definition 3.2 A sequence (zg, Z),- -, %) is a chain if (z;, Zi41) € g for all
iwith0<i<n-—1and (z;,z;42) Ebforall i with0 <i<n-2

Forall n > 2, if (zg, 2, - -, ) is a chain then there exists a unique z,,4; € X
such that (zo, 21, -, Zn, Tas1) is also a chain by pfg = p;g = 1. Moreover,
we can construct a closed chain (zg, 7}, + -, Zn = Zp) for enough large n since
| X] is finite.

Proposition 3.3 If both (29,21, --,%;) and (v, 1, -,¥:) are chains then
r(zg,z,) = r(vo, %) for eachi with2 <i < n.

Let 0 € X. We define og := {z(1,0,0),2(0,1,0),2(0,0,1)}. For fixed pair
(0,2(1,0,0)), there exists a unique minimal closed chain

(03 3(1301 0), x(zinv 0)1 ot 33("'3030) = 0).
Similarly, there exists a unique minimal closed chain

(0, 2(0, 1,0),2(0, 2, 0)' 't ,2(0,11,0) = 0).



By Proposition 3.1, there exist a unique element in z(1,0,0)g N z(0,1,0)g,
and denote it by z(1, 1,0). Inductively, we define z(i + 1, 1,0) to be a unique
elment in z(i, 1,0)gNz(i+1,0,0)g. It follows from Proposition 3.3 z(n, 1,0) =
z(0,1,0). Moreover, we define z(i + 1,2,0) to be a unique elment in

z(¢,2,0)g Nz(¢ + 1,1,0)g

and
(z(ot 2) 0))::(1)2: 0)) cee )x("’) 2’ 0))

is also a chain by the same arugment as above. Inductively, we define
(x(oijﬁo)’x(l’jio)’ e 'x(n)j) 0) = z(oij’o))

to be a chain defined z(i + 1, j,0) to be a unique elment in z(3, j,0)gN z(i +
1,7,0)g for all 1,7 with 0 < 1,7 € n — 1. Thus, we can define all elements
z(i,7,0) with 0 < 1,7 < n—1. Next, we define z(i, j, k) with0 < 1,7,k < n—1
where z(0,0,0) = o by starting to construct a chain

(0,2(0,0,1),---,2(0,0,n))

and construct all plane, which is the set of z(i, j, k) with 0 < {,7 < n—1, for
each k.

Lemma 3.4 [{z(i,5,k)|0 <{,j,k <n—1}|=nd.

Proof of the Main Theorem. We may assume that n is an odd prime,
if necessarily, because we can construct another closed chain with respect
r(0,2(i,0,0)) where i is a maximal divisor of n by Proposition 3.1 and 3.3.
It follows from Lemma 3.4 that

({=(i,5,010 < 4,5, < n —1},9)

is isomorphic to the graph given in Example 2.11.
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A new cover of the 3-local geometry of Co,

A.A. Ivanov and S. Shpectorov*

Abstract

The 3-local geometry G = G(Co,) of the sporadic simple group Co,
has been known to have a cover § = G(224.Co,) with a flag-transitive
automorphism group which is a non-split extension of an elementary
abelian 2-group of rank 24 (the Leech lattice modulo 2) by Co;. It was
conjectured that G was simply connected. We disprove this conjecture
by constructing a double cover G of G. The automorphism group of
G is of the shape 2}*% . Co,; however, it is not isomorphic to the
involution centralizer of the Monster sporadic simple group.

1 Introduction

We follow the standard terminology concerning diagram geometries and their
automorphism groups (cf. [Bue], [Pas]). In [Ron] the problem of finding the
universal covers of certain geometries of sporadic groups was considered.
The geometry G = G(Co,), the 3-local geometry of the Conway group Clo,,
is the only geometry from [Ron] for which the universal cover still remains
unknown.

First of all, let us describe G. Consider the conjugacy class € of subgroups
of order 3 in Co; generated by the Suzuki 3-elements (class 3A in [Atl]).
We say that a set of subgroups from C is commutative if the subgroups
centralize each other, i.c., if they generate an elementary abelian 3-group.
The group Co, is transitive on commutative sets of size i, for i = 1, 2,
3 and 4. Furthermore, every commutative 4-set is contained in a unique

*This author would like to thank the Martin-Luther-Universitat Halle-Wittenberg for
the hospitality.
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maximal commutative set. The maximal commutative sets are, therefore, all
conjugate. They are known to consist of 12 subgroups, and the normalizer
of a maximal commutative set induces on it a Mathieu group M;; acting
naturally. _

The geometry G has rank 4 and consists of all the commutative 1-, 2-,
3- and 12-sets. The incidence on G is defined by inclusion. It easily follows
from the above that Co, acts on G flag-transitively. The maximal parabolics
related to the action of Co, on G are maximal 3-local subgroups of G = Co,,
having the structure as follows:

G =3-5uz.2; G223 U(3).Dg;

G 2328, x S4); Gra=3%:2- M,
The diagram of G is the following:

1 2 € 3 12
o =0,
1 1 9 3

For various purposes it is convenient to study G in terms of a graph
[' associated with G. The vertex set of ' is C; two vertices-subgroups are
adjacent if and only if they commute. Then the elements of G are the vertices,
the edges of T, as well as all the 3- and 12-cliques of T".

Let ¢ : I' = T be a covering of graphs such that every 3-cycle from I
lifts in [ to a disjoint union of 3-cycles. Equivalently, ¢ has the property
that it preserves the local structure, that is, for every z € I', ¢ establishes
an isomorphism between the subgraph of T' induced on the neighbourhood
of z and the subgraph of T induced on the neighbourhood of ¢(z). Define
a geometry G whose elements are all the vertices, edges, 3- and 12-cliques
of I'. Then, quite clearly, ¢ induces a covering from G onto G. Reversely,
given a covering G — G, one can define a graph I’ using the elements of G
of type 1 as vertices, and the elements of type 2 as edges. Then the covering
of geometries induces a covering of graphs I' — T and the latter covering
preserves the local structure.

Thus, G (or any its cover G) is simply connected if and only if the fun-
damental group of T (respectively, T') is generated by 3-cycles. It was shown
in [Asc] that the fundamental group of T is generated by its 3- and 4-cycles.
This is, in a sense, the best possible generation result for T because, in fact,



the fundamental group of T is not generated by the 3-cycles alone. The ge-
ometry G does have a nontrivial cover; this cover appears as a subgeometry
in the 3-local geometry of the Monster (cf. [Ivn]) and can be described as
follows. Let G be the quotient over its center of the centralizer of a central
involution in the Monster. Then G = 21. Coy, Og(G) is isomorphic to the
Leech lattice modulo 2, and G does not split over Og(G) The definition of
the new geometry, G, is similar to the definition of G with the only difference
that we take G in place of G. Let C be the conjugacy class of subgroups
of order 3 in G that maps onto C under the natural homomorphism of G
onto G. Then the elements of § are all the commutative subsets of € of size
1, 2, 3 and 12, and the incidence is defined by inclusion. Since the Suzuki
3-elements act fixed point freely on the Leech lattice modulo 2 and since G
does not split over 05(G), it is straightforward that § is a 224-fold cover of
g.

It has already been mentioned that § is a subgeometry in the 3-local
geometry H of the Monster. The geometry H was proved to be simply
connected in [IMe]. An important step in the proof was to show that the
universal cover of H also contained a copy of G. If an argument existed,
showing that G was simply connected, it would lead to a considerable simpli-
fication in the proof of [IMe]. In reality, however, G is not simply connected,
as our main result demonstrates.

Theorem 1 The geometry G = G(22*-Co,) possesses a flag-transitive double
cover G. The automorphism group G of G is of the form 2}¥**.Co, and G is
not isomorphic to the central involution centralizer of the Monster sporadic
stmple group.

What is the universal cover of G? We hope for the best and conjecture
that the new geometry is the universal cover of G.

Notice that our argument for Theorem 1 demonstrates also the uniqueness
of G provided that the covering G — G comes from a group homomorphism
G — G. Using the classification by T. Meixner of the parabolic systems
corresponding to the diagram of g, one can prove that, in fact, every flag-
transitive double cover arrives from a group homomorphism. Thus, indeed,
G is unique.
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2 The group G

In order to construct the graph ' covering [, we shall define a group G
having a surjective homomorphism ¢ onto G, and two subgroups G; and G;
of G, the vertex stabilizer and the edge stabilizer. Certain conditions must be
satisfied. First of all, |G : G, 0 Ga| = 2 must hold. Secondly, since ¢ should
induce a covering from [ onto I', we need that G) and G; map isomorphically
onto the subgroups G. and G,, the stabilizers of incident vertex and edge of
[. In turn, G, and G, map isomorphically onto G, and G,, hence

G1 Gl él = 3 . Suz.2

and

G =Gy =G, 23 Uy(3).Ds.

We want ¢ to be a double cover, so G should be an extension of a normal
(hence, central) subgroup of order 2 by G & 22¢.Co,. If G is not perfect, that
is, if G’ < G, then the maximal parabolic G, & 38 : 2- M, is fully contained
in G'. Furthermore, G, = G{(G1 N G13) is also contained in G'. This clearly
contradicts the connectedness of the geometry, since G has to coincide with
(G1,G12). Thus, we require that G be perfect—a perfect central extension
of G.

The Schur multiplier of G is elementary of order 4 (see [Gri]). The uni-
versal central extension G of G can be constructed as a subdirect product
of the centralizer in the Monster group of its central involution (structure
214%4.Co,) with Cop = 2-Co,, the automorphism group of the Leech lattice.
Hence G £ 22.224. Co, = 2M424. Cop. In particular, for Og(G) we have the
structure 2 x 2!%24, Therefore, Z = Z(G) 22 contains a unique involution

z such that Og(G/(z)) is abelian. If y is either of the remaining two involu-
tions, then G/(y) has structure 2!+2*. Co,; and we have our first dilemma:
which of these two quotients should we take as G¢

We follow the terminology of the introduction and call a subgroup of order
3 (in G, G, G, or G) a Suzuki 3-subgroup if its image (the subgroup itself,
in case of G) in G = Co, is generated by a Suzuki 3-element. Let X<G
be the Suzuki 3-subgroup whose image in G is the vertex of [ stabilized
by Gi. (Notice that since G is a central extension of G every Suzuki 3-
subgroup from G lifts to a unique Suzuki 3- subgroup in G. The same a.pphes
to G when we define it.) Then N = Ng(X) is the full preimage of G, in
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G, i.e., C is an extension of Z by Gy 2 3- Suz.2. What extension is this?
It is well-known that the centralizer of the Suzuki 3-element in Cop is the
universal perfect extension 6 - Suz of the Suzuki sporadic group Suz. This
implies that the commutator subgroup N’ of N is also isomorphic to 6 Suz.
Therefore, Z contains a unique involution y (the one in Z N N") such that
N{{y) contains a subgroup 3 - Suz rather than 6 - Suz. We have that y # z,
because G/(z) & 22 . Co contains 6 - Suz since Cop does.
Thus, we have established the following

Lemma 2.1 The group G has a unique quotient G = 242 . Co, such that
the normalizer in G of a Suzuki 3-subgroup contains a subgroup 3 - Suz. O

This quotient is the one that we should take if we want to construct a
cover of I. Indeed, the subgroup G of G should map isomorphically onto
Gy. Therefore, the full preimage of Gy in G must at least contain a subgroup
3. Suz.

iFrom now on, the group G is as in Lemma 2.1. We mentioned in the
introduction that our G is not isomorphic to the involution centralizer in
the Monster. Indeed, it is well-known that the centralizer of the central
involution in M, though having a similar structure, does contain 6 - Suz.
Hence the centra.llzer is the remaining—third—quotient of G.

3 The vertex stabilizer G,

The group G is now known and we proceed by defining the vertex stabilizer
G.

Let X be the Suzuki 3-subgroup of G whose image in G is the vertex of
[ stabilized by Gy. The subgroup G should map onto G, isomorphically,
hence G| must be a complement to Z = Z(G) in N = Ng(X), which is the
full preimage of G, in G. Our next goal is, therefore, to show that N is the
direct product 2 x 3 - Suz.2.

We know already that N’ & 3-Suz; it remains to see that that N/N' & 22,
i.e., it is not cyclic. Qur goal will be accomplished if we find an involution
inverting X. By Lemma 2.1, Co(X) = 2 x 3 - Suz. The second factor of
this direct product maps isomorphically onto its image in G. This gives us
control over the orders of some 2-elements of G.



Lemma 3.1 If a 2-element g € G \ Z(G) centralizes a Suzuki 3-sub_qroup
then the order of g is equal to the order of its image in G.

Let Y # X be a Suzuki 3-subgroup commuting with X. Consider the
images of X,Y and N in G.

Lemma 3.2 There ezists an involution I € N inverting X and centralizing
Y.

Proof: By symmetry, it suffices to find an involution centralizing X and
inverting Y. Let § = Cg(X)/X & Suz and let U = XY /X be the image
of Yin S. It is known (cf. [Atl)) that all the order 3 elements in Suz
are rational, that is, each element of order 3 is conjugate to its inverse. In
particular, D = Ns(U) & 3- Uy(3).2; contains an element inverting U. This
means that every element in D outside D’ inverts U. Finally, by checking
the page of [Atl] concerning Uy(3), we see that Us(3).2; contains involutions
(class 2F) outside the commutator subgroup.

This establishes that Cg(X) contains an involution f normalizing XY and
acting on it nontrivially. Since X and Y are the only Suzuki 3-subgroups
in XY (otherwise, G cannot be transitive on triples of commuting Suzuki
3-subgroups!), 7 has to normalize and invert Y. o

Corollary 8.3 There is an involution t € G inverting X and centralizing
Y. In particular, N = 2 x 3 - Suz.2.

Proof: Indeed, by Lemma 3.2, there exists £ € N inverting X and centralizing
Y. Let t € N be in the preimage of £. Then ¢ inverts X and centralizes Y.
Furthermore, by Lemma 3.1, 1 is an involution. D

We now know that N splits over Z and that, therefore, there are sub-
groups that map isomorphically onto G,. We face, however, a new dilemma:
there are two such subgroups. One of them is C, = N’(t), where t is as
in Corollary 3.3, and the other one is C; = N’(tz), where, of course, z is
the involution from Z. (Indeed, N’ must be contained in every complement.
The elements ¢ and 1z represent the two cosets from N/N’ £ 22 that do not
contain z.) Which of these two complements, C, or C,, must we choose as
G\?

Without loss of generality we may assume that X and Y, the i images of
X and Y in G, make the edge of [, stabilized by G,. Let K be the full



preimage of G, in G. Suppose we have chosen our subgroups p’, and G,.
Then, first of all, G; N K = G, N G;, since Gy N G, maps onto G; N G, and
G) does not contain 2. Secondly, G) N G is of index 2 in G, and hence it is
normal in G;. As K = (z,G;), we obtain that G; N K = G, N G, is normal
in K. This is how we can distinguish C, and C;. Namely, we claim that the
following is true.

Lemma 3.4 The subgroup C;NK is normal in K for one and only one indezx
i=1lor2

Proof: Let Ky be the index 2 subgroup of K that normalizes both X and
Y. Fix r € K\ Ko, so that X" = Y and Y™ = X. The subgroup K§°
is isomorphic to 32 - U4(3) and hence it has index 8 in Ko. Clearly, Kg°
centralizes both X and Y. Since z also centralizes X and Y, t centralizes
Y and inverts X, and s = t" centralizes X and inverts Y, we conclude that
W = Ko = Ko/ K is generated by the cosets 2, { and 3, and hence W is
elementary abelian.

Notice that r acts on W as an involution and that [W,r] = (I5) is of
order 2. For i = 1,2, the subgroup C; N K is contained in Kp and has index
2 in it; C; N K is normal in K if and only il the image U; of C;N K in W is
invariant under r. Since U; is of order 4, it is invariant under r if and only if
U; contains [W,r].

The subgroup C, N C; = N’ consists of all those elements of C; that
centralize X. It follows that the image U = U, N2 of C,NCoN K in W
is of order 2 and, if U = (u), then u is one of the cosets 5, or §2. (Both s
and sz centralize X. Therefore, one of them is contained in N'.) The group
W 2 23 contains three subgroups of order 4, containing U; one of them is
(u,z) = (3, Z), the other two are U, and U,. One and only one of these three
subgroups contains [W,r] = (#5) and that is not (5, Z). Hence, one and only
one U; is invariant under r, and one and only one C; N K is normal in K. D

In accordance with the discussion before Lemma 3.4, we set G, = C;,
where C; is defined by the condition that C; N K is normal in K.

4 The edge stabilizer G,

We have our graph I' defined when we specify G3, the edge stabilizer. The
subgroup G, should contain R = G, N K = G, N G, and the index of R



in G, should be 2. Furthermore, G, should isomorphically map onto G,
which means that G2 must complement Z in K. In particular, K/R must be
elementary of order 4, rather than cyclic of the same order.

To check that K/R is not cyclic, it suffices to see that K \ Ko contains
an involution. (Recall that Kj, the joint normalizer of X and Y, is equal
to {(z)R.) Clearly, such an involution would interchange X and Y. First we
consider the images of X and Y in G.

Lemma 4.1 Suppose V is a Suzuki 3-subgroup in G, which centralizes both
X andY. Then there ezists an involution ¥ thal centralizes V and inter-
changes X and Y.

Proof: Without loss of generality we may assume that X, Y and V are
contained in the maximal commutative subset £ normalized by G),. Notice
that the twelve subgroups from T generate O3(G)2), and they are the only
Suzuki 3-subgroups contained in O3(G)3). The group F = G12/01(G12) =
2- Myz acts on T 5-transitively and Z(F) inverts each subgroup in £. This
shows that Np(V) = 2 x My, and Cr(V) = M),. Let 7 be an involution in
the preimage of Cr(V) in Gy2. Since F/Z(F) & M, acts faithfully on £, 7
has on ¥ at least one orbit of length 2. By the 5-transitivity, we can assume
that 7 interchanges X and Y. 0

As a corollary, we obtain the following,.

Lemma 4.2 There ezists an involution r € K inlerchanging X and Y. In
particular, K/R = 22 and K splits over Z.

Proof: Let V be a Suzuki 3-subgroup in G that centralizes both X and Y.
Then, by Lemma 4.1, there is an involution 7 in G that centralizes ¥ and
interchanges X and Y. Pick r in the preimage of # in K. Then r has to
centralize V and hence, by Lemma 3.1, it is an involution. Also, clearly, r
interchanges X and Y. o

Since K/R 2 2? there are two subgroups, T) = R(r) and T3 = R(rz),
that contain R and complement Z. Thus, we again have a binary choice:
which of the two complements T; should we take as G, ¢

Notice that, for both our choices of G, thus defined graph I' covers I
We claim that one and only one of these two coverings preserves the local
structure,



Suppose we have chosen G; = T; for some i = 1 or 2. How can we see
whether this covering preserves the local structure? We need to check that
every 3-cycle from ['liftsinTtoa pair of 3-cycles, rather than a 6-cycle. The
group G is transitive on the vertices of I' and G acts transitively on (ordered)
pairs of ajacent neighbours of the vertex it stabilizes, which is simply X. By
construction, similar properties hold for I', G and G,. This means we only
need to check whether one particular 3-cycle from T lifts in T to (a pair of)
3-cycles. We choose, as this one particular cycle, the cycle formed by the
commutative set C = {X,Y,V}, where V is the preimage in G, of V from
Lemma 4.1. . X

Let Q be the elementwnse stabilizer in G of C. Let @ € Gy be an element
that interchanges Y and V. Let also b € G, be an element that stabilizes
V and interchanges X and Y. For simplicity, we take b=+, where r is as
above. Clea.rly, (a, b) induces S on € and (4b)® € Q. Let Q and a be the
preimages in G, of Q and 4, respectively. Let also b be the preimage in G,
of b. (Since b=+, we have b=r, or rz depending on whether i = 1, or 2.)

Let z € T be one of the two llftmgs of X and let y and v be the neighbours
of = that map onto Y and V, respectively. Then G, is the stabilizer of =
and G, is the stabilizer of the edge {z,y}. In particular, both a and b have
to stabilize the connected component of the preimage of the cycle C, that
contains z,y and v. If the preimage of C is a pair of 3-cycles then one of
them is induced by z, y and v. In this case (zy)® is in Q which is the joint
stabilizer of z,y and v. On the other hand, if the preimage of C is a 6-cycle
then {a, b} induces on it the full group D;3. (Indeed, a flips this cycle around
z, while b flips it around the edge {z,y}!) Hence, in the second case (zy)° is
not in Q. We arrive to the following conclusion: the covering from I' onto '
preserves the local structure if and only if (zy)? is in Q.

Lemma 4.3 For one and only one choice of G; = T; does the covering
I' — T’ preserve the local structure.

Proof: The group G, is the same for both choices of i, so the meaning of Q
and a does not depend on ¢ = 1 or 2. On the other hand b = r for i = 1,
and rz for i = 2. Since (arz):' (ar)%z, in one and only one case is (ab)’
contained in Q. (Indeed, since (ab)® € Q, we have that (ab)® € ZQ, as ZQ
is the full preimage of Q in G.)

Clearly, we set G; = T;, i = 1, or 2, in the unique way, as in Lemma
4.3. Then we obtain a graph T and a covering ' —+ " that preserves local
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structure. According to the discussion in the introduction, this means we also
have a geometry G covering 6. Since the action of G, on the neighbourgood of
x is the same as the action of G; on the neighbourhood of X, we immediately
see that the action of G on G is flag-transitive. This completes the proof of
Theorem 1.
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Construction of Hadamard Matrices
Using Dihedral Groups

Hiroshi kimura
Ehime University, Matsuyama, Japan
kimura@dpc.ehime-u.ac.jp

Let H be a (£1)-matrix of oder n. H is a Hadamard Matrix of order n if HH* = nl.

Hadamard’s Conjecture:
If n is dividible by 4, then there exists Hadaimard matrix of order n

Notation: Let G =< z,y|z" = y* = 1,yzy = ™' > be a dihedral group of order 2p.
Let ZG be a group ring of G over Z. For a subset S of G we use the same symbole S as

s

€S
PutJ=) g = > g
g€G geE<a>
For A € ZG,
A= A+ Agy with Al, A e<x >
A=J-A

a = |A1| and ap = |A2|
Let j =(1,---,1) be an all 1’s vector and put k = j*

Put D(H) = (H + J)/2 and we call also D(H) a Hadamard matrix.
We identify elements of G with their matrices of regular representation of G.

When we classified Hadamard matrices of order 28 in [7], we found Hadamard matrices
ol the following form:



111135 35 37 3

11 i J

1 1 ] ]

1 1 j 3
DH)=|r gk A BCOD

kk kB ADTCT

ik kkCDAGB

n DT B A

where A, B,C, D are subsets of a dihedral group G of order 6
Let H be a matrix of order n = 8p + 4:

1
11 i 3
11§
1 1 GG

H=|4r trk ABCOD
kk kB ADTC
k k k CD AB
k DCBA

where A, B,C, D are subsets of G

Proposition 1 H is H-matriz if end only if the following equations are holded

|Al=p—1, |B|=|C|=|D|=p

AA'+ BB'+CC'+ DD' = (2p+ 1)] + 2(p - 1)J
AB' + BA'+CD' + DC' = (2p— 1)J

AC'+ BD' + CA' + DB* = (2p— 1)J

AD' + BC' + CB* + DA' = 2pJ

Since AB' = (p— 1)J — AB"*, the above conditions are equivalent to the followings:

Proposition 2 H is H-malriz if and only if the following equations are holded

|Al=p—1and B =|C|=]D|=p

AA' + BB+ CC'+DD' = (2p+ 1)] +2(p — 1)J
AB' + DC' = BA! + CD'(= (AB* + DC")")

AC' + BD' = CA* + DB

AD'+ CB* = BC' + DA'

When H is H-matrix, we say (A, B, C, D) H-group array.
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Proposition 3 (A, B, C, D) is a H-group array, then we have the followings:
1. (9A, 9B, gC, gD) is H-group array
2. (Ag,Bg,Cg, Dg) is H-group array
3. (A°,B°,C°, D) is H-group array
where ¢ € G and o is an automorphism of G

By signed permutations of rows and columus of H and taking transpose of matrices,
we have the following propositions.

Proposition 4 If (A, B,C, D) is H-group array, then
1. (A,D,C, B) is H-group array
2. (A,B,C,D) is H-group array
3. (A,B,C, D) is H-group array
4. (A,C,B, D) is H-group array

By Proposition 4 we may assume that

Assumption 1
a L ap
b, , ¢; and d; are odd,
and
by, ¢ and d» are even.

By Proposition 2 a;,:-:, and d; must satisfy the conditions:
La+ad+}+B+3+G+E+B =2 +1
2. @103+ byby + 12 + dydy = p(p — 1)

Exsample
plai ax b b ¢y ¢ dy dp
3]0 2 1 2 1 2 1 2
512 2 1 4 3 2 3 2
712 4 5 2 3 4 3 14
9]4 4 3 6 3 6 5 4
11/14 6 7 4 7 4 5 6

Under some assumputions on G we consider the construction of H-matrices by dihe-
dral groups
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Assumption 2 Let o be an element of Aut < z > of order §. A,B,C, end D are
o-invaliant.

Under this assumpution there exist H-matrices for p=5,9,17 and 29
Assumption 3 A, B,C and D are y-invaliant.

Under this assumpution there exist H-matrices for p=7,17,19,21,23,25 and 27

Assumption 4

p=1(4)

a=d=, o=d =3
CiCcC ieCi=C+1

DI C D, teDy=D2+1
A+ Ar=0 -1
B+ B, =J,

Under this assumpution there exist H-matrices for p=5,13,37,41 and 61
By a computer seach we have H-matrices for the following cases

3<p < 29(p#15)

p = 37,41,47,61
Example of H-matrices
p=3
A= 1 +z +22 +( 1 +z +2%)y
A= (1 +zl)y
B=1 +( r +z2)y
C= z® +( z +z?)y
D= T +( z +z%)y
p=5
A= T +zt 4( 2 +23 )y
B=1 +H oz +2? +2° +2l)y
cC=1 +2? 423 +( z? +2° )y
D=1 +z +a4 +( = + 2y

Remark 1 Minimal degree of matriz such that we don’t know the exzistence of H-matriz
is 428(= 53-8 + 4)



Remark 2 H-matrizecs of Williamson type construct form cyclic groups. Williamson
type:
B C D
ADC
A B
C B A

where A, B,C and D subsets of cyclic group of order nf4

Ol O ) >
v
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Binary code VOA and finite automorphism groups

Masaaki KITAZUME
Department of Mathematics and Informatics
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Chiba 263, Japan

This report is based on a joint work with Masahiko Miyamoto.

1 Introduction

Vertex operator algebra V is an infinite dimensional Z-graded algebra V = @22,V,, but
it has sometimes a finite full automorphism group. In this paper, we will treat the case
where dimV, = 1 and V; = 0. In this case, V; is a commutative (nonassociative) algebra
with a symmetric invariant bilinear form (, *) given by {v,u)1 = vyu for u,v € V;. This
is called a Griess algebra in [M1].

Our purpose in this paper is to study code VOA Mp which are construced from even
linear binary codes D in [M2]. If D has no codewords of weight 2, then dim(Mp), = 1
and (Mp)) = 0 and so (Mp); is a Griess algebra. In this case, it is not difficult to see that
the full automorphism group of Mp is finite [M3] and the automorphism group of Mp has
a normal subgroup which is a 3-transposition group. We will classify such 3-transposition
groups G and construct code VOA with automorphism group G.

2 Vertex Operator Algebras and the Griess Algebras

A vertex operator algebra (VOA) is a Z-graded vector space V = @32 ,V,, with the specified
elements 1 (the vacuum) € V,, w (the Virasoro element) € V; and infinitely many products

Xo ! VXV aV:i(vu)mvxu(=:v,u) (n€2)

We recall some properties of VOA, but omit the precise definition.
(1) vau € Vigmn-1 forv e Viyu € V,
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2)1,v=v, 1L,v=0(n# -1)
B)wiv=nv(veV,)
(4) L(i) := w;4) satisfies the Virasoro relations;

md—-m

[L(m), L(n)] = (m — n)L(m +n) + 6m+n.OTc
where c is called the central charge of V.
For the definition of Griess algebras, we assume more properties:
(5) dim(Vp) =1, that is, V5 = (1).
(6) dim(W}) = 0.
We define a binary operation u X v and a bilinear form < u,v > on V3 by

uXxXv:i=uyvw, <u,v>1:=uw.

Then it can be verified that u x v and < u,v > are commutative.

3 Idempotents and Automorphisms of order 2

In this section, we will recall the results of [M1] about the relation between idempotents of
the Griess algebra V, and automorphisms of order 2. Here we further assume that VOAs
are over the real field R and have a positive definite invariant bilinear form (,). Rescaling
it, we may assume < u,v >= (u,v) on V4.

Theorem 3.1 The following two conditions are eqivalent with each other.
(1) e € V2 is an idempotent (i.e. e X e = €) and salisfies < e,e >= ~,16-
(2) 2¢ is a conformal vector of central charge -;—, that is,

mi-m 1
12

[L(m), L(n)] = (m = n)L(m + n) + 8msno

f01‘ i’(m) = (28)m+l

Let Vir(e) be a subVOA generated by e (or L(n)). Then Vir(e) is isomorphic to L(3,0).
Hence V splits into the direct sum of irreducible Vir(e)-submodules, which is isomorphic
to L(3,0),L(3,1) or L(3. 1)

Definition 3.2 An idempotent e is of type 2 if and only if there ezist no Vir(e)-submodule
isomorphic to L(3,75). An idempotent e is of type 1 if and only if there do ezist a Vir(e)-

submodule isomorphic to L(}, {5).

Theorem 3.3 (1) For an idempotent e of type 1, define an endomorphism 1, on V by
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7, = id on submodules isomorphic to L(3,0) or L(},3
7, = —id on submodules isomorphic to L(3, ).

Then 7. is a automorphism of the VOA V, and 1% = idy
(2) For an idempotent e of type 2, define an endomorphism o, on V by

o, = id on submodules isomorphic to L(3,0)
o, = —id on submodules isomorphic to L(},1).

Then o, is a automorphism of the VOA V, and o? = idy

Theorem 3.4 If e, f(e # f) are idempotents of type 2, then one of the following holds.
(1) {e,f) =0 and (0.04)* = 1

(2) (e, [} = 135 and (g.0/)* =1
In particular, The involutions a.’s generale 8-transposition group.

4 Code Vertex Operator Algebras

Let C be a binary even code of length n. We set M = L(3},0) & L(3, ;), and consider the
tensor product of n copies of M. For ¢ = (¢1,¢3, ...,¢,) € C, we denote by (®™ M), the set
of all linear combinations of the form v, @ u; ® ... @ u,(u; € L(%, %), where ¢; are regarded
as integers 0,1. We define

Me = ®(®(")M)c ® €,
ceC
"where ®¢f is a symbol with efe”’ = e“t*". M has a VOA structure natually. The degree of

1 Qu®...0u, ®cc is the sum of the degrees of u; and E.f)- and so the degrees of elements
in Mc are integers since C is an even code. It is easy to see that (M¢), =0 for n < 0 and
dim(Mg)o = 1.

The element 1 = 1®1@®...®1 is the vacuum of M. Set W = 1®1®...@Ww®..01 (
w is on the i-th component ) and define W = Ww! + ...Ww". Then W is the Virasoro element
of Mc.

Moreover M. satisfies the following properties:

Lemma 4.1 (1) Mc has an invariant bilinear form.
(2) dim(Mc)o =1
(8) 3W' is an idempotent of (Mc); and salisfies < JW', W >
(4) 3W' is of type 2.

We assume that the minimal weight of C is four. This means that (M¢), = 0 and thus
(Mc), becomes a Griess algebra.

L
16"
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Lemma 4.2 (M2) (1) Let H be a [8,4,4]-Hamming subcode of C with
suppH = {ihihi:hihi-’nisvi'his}-

Then for any a € F3,

1 . . 1
e=enim (W o+ W)+ T (1)@,
32 32 gep, 1Bl=4

is an idempotent of (Mc)2 and satisfies < e,e >= 5.
(2) If suppH C C*, then e,y is of type 2.

Remark 4.3 If o equals to o’ modulo HY, we have e, = e,s. Hence there ezist 2! elements
esn for each H.

Definition 4.4 Let D¢ be the set of involutions o, such that e is an idempotent of type 2
and satisfies < e,e >= ;.

By the above Lemmas, 3w’ and e, 4 are elements of D¢.

Theorem 4.5 (M2) Let K¢ be the subgroup of Aut(Mc) generated by Do. Then D¢ is
a set of $-transpositions of Kc.

Let L = {0,,...,0,}, where o; = oy, for i = 1,...,n. The following is a key of this paper.

Lemima 4.6 Let e be an idempotent of type 2 and assume o, € L. Then |CL(o.)| =n—8.
In particular, L is a maximal subset of mutually commuting elements of D¢.

Proof. By the equations:
1
1 =< 2¢,2e>=<w,2e >=< W + ...+ W",2¢ >

and Theorem 3.4, there are exactly eight W', say W',..., W8, such that < W',e >= g for
i=1,..,8and < W,e>=0fori=9,..,n. ]

Notice that a maximal sebset of mutually commuting elements of D¢ is obtained as the
intersection of D¢ and a Sylow 2-subgroup S of K¢. The number |L] = |S N D¢| is called
the width of K¢ in [Fi]. )

The 3-transpositions groups satisfying the condition of this Lemma are easily classified
by using Fischer’s list [Fi] of 3-transposition groups G satisfying O,(G) = 05(G) = 1.

Let D be the set of 3-transpositions of G. We will describe a 3-transposition group by
the graph whose vertices are the elements of D and edges are defined by :
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{a,b} is an edge <= [a,b] # 1

We will denote this graph as ['(G) or ['(D). If O,(G) # 1, then D = DO,(G)/04(G) is 2
set of 3-transpositions of G = G/0,(G), and the number of the elements of dO,(G) is a
power of 2 for any d € D. If I'(G) is connencted, then this number (= 2*, say) does not
& =
depend on the choice of d € D. Then we write I(G) = 0§ - [(G).
Now we will state the following main theorem.

Theorem 4.7 Let K¢ be the subgroup of Aut(Mc) generated by D¢, and E be a subsel of
D¢ such that I'(E) is a connected component of I'(D¢). Then ['(E) is isomorphic to one
of the following.

I'(E) [Z] 3
(i) T(07(i0,2) {96 16
(i) T(Sp(8,2)) 255 15
(iii) 0¥ -T(0*(8,2)) 240 16
(iv) O .r(Sp(6,2)) 126 U
(v) OW.T(Sm) (m>2) 4m(2m-1) 4m
(vi) O -I(Ss) 2 8

Here ¢ is the mazimel number of mulually commuting elements of E.

Remark 4.8 The main parts of the groups of the cases (iii), (iv) are the Weyl groups
W(Es), W(E;) respectively. Under such a viewpoint, the main parts of the groups of (v),
(vi) are the Weyl groups W(Dam) (m = 2 for (vi)). (i.e. O . T(Sym) = O -T(W(D2m)))

5 Examples

(1) Let C be the 2nd order Reed-Muller code of length 16. Then the case (i) of Theorem
holds. We will explain this in detail.

Let Q be the set of all the vectors of the 4-dimensional vector space V over the two
element field F3, that is, a point of Q) is a vector of V. We regard the power set P(Q) of {2
(i.e. the set of all the subsets of ) as a vector space over F, by defining the sum X +Y
as their symmetric diflerence (X UY)\ (X NnY)for X,Y C Q.

We define the code ¢ C P(f2) as the subspace spanned by all the 2-dimensional afline
subspaces of V. Then C is [16,11,4]-code and is known as the extended Hamming code of
length 16 or the 2nd order Reed-Muller code of length 16.

A codeword of minimal weight of C corresponds with a 2-dimensional affine subspace of

V. Hence C contains 140(= ‘}f'—.f%%l x 4) vectors of weight 4, and thus dim(M¢), = 156.
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Let W be a 3-dimensional affine subspace of V, and Hw be a subcode of C spanned by
all the 2-dimensional affine subspaces of W. Then it is easy to see that Hw is a [8,4,4]-
Hamming subcode of C, and suppHw C C*. Since the number of the 3-dimensional affine
subspaces of V is 30(= 1-'(68—'_?%“&2—:)‘1 x 2), we can obtain 480(= 30 x 2*) involutions
defined by an idempotent ¢, y,, for some W. Hence the set D¢ contains at least 496

elements. By Theorem 5.8, we have |D¢| = 496 and I'(K¢) = I'(0*(10, 2)).
In the following examples (2)-(4), we use the notation of the previous example (1).

(2) Let O be the zero vector of V, and set ' = 1\ {0}. We define the code C' C P(§)') as
the subspace spanned by all the 2-dimensional affine subspaces W of V satisfying 0 ¢ W.
Then C' is a [15,10,4]-code. By a similar argument as in (1), we have that dim(M¢:); =
120, | D¢:| = 255, and ['(K¢:) = T'(Sp(8,2)).

Notice that the code C' is regarded as a subcode of C. Then the structure of K¢ is
easily deduced by the fact Cp+(y0,2)(d)/(d) = Sp(8,2) for some d € Dc.

(3) Let U be a one-dimensional subspace of V, and set ¥ = 1\ U. We define the code
C" C P(Q)") as the subspace spanned by all the 2-dimensional affine subspaces W of V
satisfying U N W = 0. Then C” is a [14,7,4]-code, and dim(Mcu); = 91, | Dex] = 126.
Moreover we have I'(K¢gw) = O?) - ['(Sp(6,2)).

(4) Let r be a integer greater than 1. Let V;,Q;,Ci C P(€%) be a copy of V,Q,C of (1)
respectively fori=1,....r . Set C"=C,® C2® ... ® C,. We fix a 1-dimensional subspace
U; of V; for each 1, and set U;; = U;UU; for i # j. Then the weight of U;; is 4. Let C(E,r)
be a code of length 16r spanned by C" and all U;; for i # j.

Let W; be a 3-dimensional affine subspace of V;, and Hy, be a subcode of C(E, r) spanned
by all the 2-dimensional affine subspaces of W;. Then the condition suppHw; C C(E,r)*
holds if and only if W; contains U; + a for any a € W;. The number of W; satisfying this

condition is 14(= ‘}g—:g;{:‘f"—‘;l x 2) for each i.

It is easy to see that |D¢g(g,| = 240r and I'(Ke(g,) = {0 .1(0+(8,2)}".

(5) For an integer m > 1, we define a [4m,3m —2,4]-code Cy, by the following generating
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matrix

{1 11100000000 ..000000°00)
001111000000 ..00000000
000011110000 ..00000000
000000111100 ..00000000
000000O0OO0CI1111..00000000
000000000000 ..00111100
0000000O0OO0O0OODO0OO0..00001111
101010100000 ..00000000
000010101010 ..00000000
\0 00000000000 ..10101010)/

Then dim(Mc,,)2 = 6m? — m, | D¢,,| = 8m? — 4m, and ['(K¢,,) = O - [(Sam)
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Some examples of unramified extensions over
quadratic fields

Takeshi KONDO
November 22, 1997

1 Introduction

The purpose of this note is to state the following Theorem 1 and to give some examples
of unramified extensions over quadratic fields related to the theorem. For the details of
the proof, we refer the readers to [Ko.

Theorem 1 Let K be an algebraic number field of degree n with the discriminant 52
where § is a square-free odd integer. Let L be the Galois closure of K over Q, the field of
rational numbers, and G be the Galois group of L/Q which is regarded as a permutation
group of degree n. If G is primitive as a permutation group, G is one of the following
groups:

(a) A,, the Alternatin group of degree n,

(b) n =8 and G =~ Hol(Z3), the holomorph of an elementary abelian group Z3,

(¢)n=17and G~ PSL(2,7),

(d) n =6 and G ~ PSL(2,5)(~ As),

(e) n =5 and G ~ D)g, the dihedral group of order 10.

This theorem follows from Th.2 and Th.3:

Theorem 2 Let K, L, G be as above. If p is a prime ramified in L/Q, then the inertia
group of p is a group of order 3 generated by a 3-cycle or a group of order 2 generated by
a product of two transpositions.

It is well known (cf.[W]) that a primitive permutation group which contains a 3-cycle
is A, or S,,, from which (a) of Th.1 follows (Note that G C A, as the discriminant of K
is square). Now Th.1 follows from

Theorem 3 Assume that a primitive permulation group G of degree n other than A, or
S, contains a subgroup of order 2 generated by a product of two transpositions. Then G
is one of groups listed in (b)~(e) of Th.1.

Theorem 4 Let G be as in (b),(c) or (d) of Th.1. If Q(+/m) is a quadratic field with §|m,
then L{/m)/Q(y/m) is a unramified extension with Galois group Hol(Z3),PSL(2,7) or
PSL(2,5) respectively.

Some examples of (c) or (d) of Th.4 will be given in §2, In particular, we will note
that a family of sextic polynomials constructed by A.Brumer gives many examples of the

case (d). The author knows no examples of the case (b).
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2 Some examples of Th.4
2.1 The case PSL(2,7)

In (Y], K.Yamazaki found several examples of polynomials of degree 7 with the Galois
group PSL(2,7), and then, among them, K.Yamamura found the following examples
which define number fields satisfying the conditions of Th.1, and noted that they yield
unramified extensions of quadratic fields:

f(z) =27 + 22% — 3z% — 2% — 2% — z + 2, d(f) = 105124009 = 102532,

flz) =27 — 28 — 2% + 2 — 23 — 322 + 3z + 2, d(f) = 157979761 = 12569,

f(z) =27 —2* — 23 - 722 + 4z + 5, d(f) = 26536735801 = 1629012,
where d{f) is the discriminant of f(z).

Th.1 was suggested by this indication of Yamamura.

2.2 The case PSL(2,5) ~ A;
The following family of sextic polynomials was constructed by A.Brumer (cf.[O,p765]):

f(z;b,c,d) = 28 + 2¢2® + (2 + 2c + 2 ~ bd)x? + (2c® + 2¢ + 2 — 2bd + b — 4d)2?
+(E+4c+5—-bd+3b)z®+ (2c+6 +3b)z + (b+1)

In [A] or [Ko], it is proved:

Theorem 5 Ifb,c,d is independent variables over Q, then the Galois group of f(z;b, ¢, d)
over Q(b,c,d) is isomorphic to PSL(2,5) (~ As).

Remark. The proof of this theorem was done with the help of "Computer Algebra”
due to H.Anai. But, more recently, K.Hasimoto has found a construction of f(z;b,¢,d)
other than A.Brumer’s one, including the proof of Th.5 (cf.[H]).

The discriminant of f(z;b,c,d) is as follows:
D(b,c,d) = é(b,c,d)?

where
5(b, ¢, d) = 16bdc® + {(—144d + 16)b — 64d}c®

+ {(—48d° — 4d)b* + (—16d* + 192d — 144)b + (384d — 64)}c*

+ {(288d® — 160d — 4)b* + (832d° + 1008d + 208)b + (644> + 320d + 384)}c°

+ {(48d° + 84%)b” + (324° — 6084> + 1336d — 108)b> +
(—12804° + 1184d + 896)b + (—2304d* ~ 2752d + 256)}c°

+ {(—144d3 + 144d® + 36d)b® + (—7684° + 5284% — 2880d + 1008)b2 +
(—576d® — 1536d> ~ 10032d + 432)b + (—4032d° — 9408d — 2496)}c

+ {(—16a" — 4d>)6* + (—16d* + 416> + 244> + 108d + 27)6° +
(2112d° — 1824d* — 264d — 2268)b* + (3456d° — 6096¢* — 1936d — 7744)b +
(17284° — 5184d® — 2176d — 6592)}

We note that
(3.1) 8(b,c,d) = 27® mod 4Z[b, ¢, d]
(3.2) For b,c,d € Z, §(b,c,d) is odd il and only if b is odd.



Furthermore it turns out that there exist (probably infinitely) many b(odd),c,d € Z
such that §(b,c,d) is a square-free odd integer (even a prime number). Thus we have
many examples for PSL(2, 5)-case of Th.4. Numerical examples where é(b, c, d) is prime
will be given in Table 1 and Table 2 of the end of the present paper.
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Table 1. f(z;b, ¢, d) giving totally real unramified As-extension
over Q(/P) (p: prime)

P
8311
25771
32611
37987
72707
83443
426427
515993
697441
727427
877867
944399
1204243
1207447
1294723
1447811
1606763
1648379
1836811
1924651
2118163
2214761
2219807
2719001
2828879
2956907
4176239
4367879
4460909
4748371
5060053
5122259
6492137
6874397
7156883
7360273
7540529
7912319
8358299
8540509

b
-7
-11
11
-3
=27

—11
-9
-9
-3

-19

31
-3

-23
-3
-3

27
-3
.27

—67

-11

-15
41
15
-3
15
31
77
-3
-5

33
-29
27
-25

=31
-3
—61
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h(p) =the class number of Q(,/P)
& in h(p) denotes the sign of norm of the fundamental unit

d
0
-1
2
-1
0
9
0
0
-1
-3
-2
1
-1
0
-1
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P
8554027

8573023

8987213

9072919
11059123
11141743
11367269
11456923
11464213
12143441
12542939
13957429
14390213
15226147
16013611
16102049
16237597
16451047
17110019
17283269
17618281
18279497
18389779
18492841
18616799
20265703
20855221
21391471
21779123
21787061
23577859
23732327
23786627
23881133
24278819
25168387
26204767
27454211
29772409
29961859

b
-3
15
21
39
-3
-7
29
-3
45
=57
19
=21
=5
=27
-11
41

15
-3
=21
-17
=25
=3
-9
-7
-7
=37
-7
43
21
-35
79

13
43
-3
-23
-19
81
—83

d h(p)
-4 1
3 1
2 -3
3 3
-1 3
-3 1
4 -1
-1 1
1 -11
0 -1
2 25
-1 -1
0 -1
-1 1
-1 1
1 -1
-1 -3
4 13
-2 1
0 -1
-2 -1
-1 -1
-2 1
-1 =1
-1 1
0 1
0 -1
-5 7
11
2 -1
-2 1
1 3
-3 1
4 -1
11
-1 1
-3 43
-1 1
1 -1



Table 2.

P
653

2053
2083
3329
4073
5413
7433
8311°
10453
10597
10687
11969
14321
14323
15289
16193
16529
18049
18329
19661
21341
21757
24499
25771°
24631
26429
26731
27947
32611°
32987
36293
37987
38767
39139
44053
47623
47653
51461
53923
54581

b— bt bt ) G G G b md QN bt bt G bt bt bt G s e b ) = = GO D Y O

—t

—t

—t

| | — O N
W L W = O —

| |
WA WY W©Wwe—

f(z; b,c,d) giving unramified Ag-extension over Q(,/p)

N = I N WO = e = NN NW OO JOO N O CW M O et b bt o =3 N =] = QN =] WK s o

d h(p)
0 -1
0 -1
0 1
0 -1
0 -1
0 -1
0 -1
-1 1
0 -l
1 -1
-2 1
-1 -1
2 -1
11
0 -1
0 -1
1 -1
0 -1
-1 -1
6 -1
-2 -1
-3 -1
0 3
-1 1
4

|
(3]
I
Pt et CA) bmmd et et et ek et ek et

—_0 O O -
| 1
— s et gt

P
54617

56923
58567
58603
58907
61211
63149
63929
67231
68891
72707°
74611
75941
77641
83443°
84317
84871
85829
87433
94307
96043
100937
101531
102587
104393
112459
113567
115499
115763
119737
121577
123373
125777
127423
131221
136573
137519
141761
142217
144323
149551

(* shows that f(z;b,c,d) is totally real)
h(p) =the class number of Q(,/?)

-3
17
=3
7
-5

()]

|
—

|
| —

(
—
W — — O WWIW = — o =] W =W =W W m—

B AN o BN J WO W OOV B = b = )W = b == BN =N WS

d h(p)
0 -1
0 1
3 5
1 9
0 3
-1 3
1 -1
1 -1
0 3
-2 1
0 1
0 1
3 -1
0 -7
9 3
2 -1
111
-4 -1
2 -l
-3 1
11
4 -1
4 3
5 1
-2 -1
11
-1 19
2 1
0 7
0 -1
-2 -15
0 -1
-2 -1
0 1
1 -7
-3 -1
0 1
5 -3
-2 -1
0 1
2 1



On a conjecture of Bannai and Ito

Jack Koolen
jackmath.kyushu-u.ac.jp
Graduate School of Mathematics

Kyushu University
October 24, 1997

In this note I will give an outline of the proof of the following result.

Theorem 1 There are only finitely many distance-regular graphs with va-
lency k, with 3 < k < 1000.

This theorem partially resolves the following 1984 conjecture of Bannai and
Ito.

Conjecture 2 For a fized k > 3, there are only finitely many distance-
regular graphs with valency k.

Definitions

In this note all the graphs are simple, undirected and without loops. Let T
be a graph. For all vertices z of T, define I';(z) :=

{v € T | d(z,y) = i}. We will use I'(z) instead of I';(z). A graph I
with diameter D is called distance-regular if there exist numbers a;, b;, ¢;,
i=0,1,...,Dsuch that if z,y are any two vertices of I, say at distance j,
then

[Ti-1(z) N T(y)] = ¢j,
ITi(z)NT{y)] = aj,
ITj41(z) N T(y)| = b;.

So a distance-regular graph is a regular graph with valency be.
Furthermore the following hold:

b > bl'-l-lv
¢ < Cigy.

The (1-skeleton of the) dodecahedron is an example of a distance-regular
graph.



Now I will say some words on the history of this conjecture.
History

In a series of papers (1987 -1989), Bannai and Ito showed the following
theorem.

Theorem 3

(i) There are only finitely many distance-regular graphs with valency three
or four,

(ii) For a fized k 2> 3, there are only finitely many bipartite distance-regular
graphs with valency k.

For small valencies the distance-regular graphs are classified.

Theorem 4

(i) [Biggs, Boshier and Shawe-Taylor] There are ezactly 18 distance-regular
graphs with valency three.

(ii) [Brouwer and Koolen] There are ezactly 17 intersection arrays for which
a distance-regular graph with valency 4 ezists. For two of the intersection
arrays there are ezactly two examples known, for 14 of the intersection arrays
the distance-regular graph is known to be unique, and for the last one there
is an ezample known, but it is not yet known lo be unique.

Main Idea

Now I will give the main idea behind the proof. Let & be an eigenvalue
of a distance-regular graph I’ (i.e. of its adjacency matrix) and let & be an
algebraic conjugate of & (over the rationals), then the multiplicities of § and
¢ as eigenvalues of I are equal,

Some Theorems

In this section I will give some theorems we need for the proof of Theo-
rem 1,

Theorem & Let k > 3. There are constants R,e > 0 such that if T" is a
distance-regular graph with valency k, diameter D, r = ly4,4,, 8 = ljy 051
satisfying D —r —s < ¢r, thenr < R.

This theorem is a generalisation of the following theorem of Bannai and Ito.

Theorem 6 Letk > 3 and C > 0. There is a constant R such that if T is
a distance-regular graph with valency k, diameter D, r = ly o, 4,, 8 = lb; 011
satisfying D —r—s < C, thenr < R.



Theorem 7 Let k > 3 and C > 0. There is a constant R such that if
' is a distance-regular graph with valency k, diameter D, r = |y 5, 3,, and
satisfying |{i | a; — 2v/bici > ay + 24 2vb; —2}| < C, thenr < R.

This theorem has the following corollary.

Corollary 8 (Bannai and Ito) For @ fized k 2 3, there are only finitely
many bipartite distance-regular graphs with valency k.

Theorem 9 Let k > 3 and 8 > 0. Leta 2 0, b,c > 0 be such that
a+b+c=k, anda+2vbhc> k—p— 1+ YB(1+ B). There is a constant
R such that §f T" is a distance-regular graph with valency k, by = B, then

lc'a'b S R-
Proof of Main Result:

For any k and 8 with 3 < k € 1000 and 1 € 8 £ k — 1, there are no
integers @ > 0,b,¢> 0 witha+ b+ c=k,

a+2vbhe < k=B -1+ VB(1 +vB),

anda—2vbe> k- f+1+2/F-2}| < C.

By using Theorems 7 and 9, it follows that there are only finitely many
distance-regular graphs with valency at most 1000.

QED.
Remark. In fact it is possible to replace the 1000 of Theorem 1 by 1027.

Open problem.

Let I be a distance-regular graph with valency k, r = {( 4, s,), and diameter
D. Assume that

(forall1<i<D-1wehaveb;=1lor¢;=1.

Show that r is bounded by a function in k.

If we set p := |{i | b; = 1}, then we know that r is bounded by a function
of k and p. It follows that if I is antipodal and satisfying (*), then r is
bounded by a function of k.



Morita Equivalent Blocks of Finite Groups

Shigeo KOSHITANI

In modular representation theory of finite groups, there are several
important problems, namely, Brauer conjecture, Alperin-McKay
conjecture, Donovan conjecture, Alperin weight conjecture, Dade
conjecture and Broué conjecture (see [1], [2], [3], [4], [5]. [6], [7], 8], [9]).
[10, Chap.IV, §5] and [12]). It is considered that they are in the center of
modular representation theory of finite groups.

In this short note we discuss on the Broué conjecture. We need several

notation in order to state it.

Notation : Let k£ be an algebraically closed field of prime characteristic
D, let G be a finite group which has a Sylow p-subgroup P. We denote by
kG the group algebra of G over k. Let N = Ng(P), say, the normalizer of
P in G. Moreover, let A and B be the principal block ideals (the‘principa.l
p-blocks) of kG and kN, respectively. See a book of Nagao and Tsushima

[13] for general notion and terminology in representation theory of finite

groups.

Broué conjecture (question) : Keep the notation above. If P is

abelian, then is it true that the blocks A and B are derived equivalent ?
(See [5], [6] and [7] for derived equivalent blocks).

Here we are not going into detail about derived equivalent blocks. What
is needed here is that the blocks A and B are derived equivalent if A and

B are Morita equivalent (see [7]).



There have been only several known examples where Broué conjecture
holds (see [7]). It should be noted that T. Okuyama recently checked it in

several other cases which seem very interesting (see [14]).

From now on till the end of this note we assume the following. The
groups PSU(3,¢?) for 2 < ¢ = 2 or 5 (mod 9) are one of the infinite series
of finite simple groups whose Sylow 3-subgroups are elementary abelian of
order 9. Therefore, it seems natural to investigate if Broué conjecture holds

for these groups for p = 3.

Assumption : p = 3, that is, chark = 3, G = PSU(3,¢%),2 < ¢=2
or 5 (mod 9), P € Syl3(G), N = Ng(P), A = Byo(kG), B = kN (the
principal block ideals of kG and kN). Note that kN is indecomposable
as a two-sided ideal. Then it is known that P 2 C3 X Cj, the elementary
abelian group of order 9, and that NN is a semi-direct product P : Qg of P
by the quaternion group Qg of order 8.

Now, the first observation in this case is the following.

1st Observation : (See [11, (2.2)Lemma]). The group algebra kN has
five non-isomorphic simple modules 19 = ky (the trivial module), 1,, 15,
14, 2, where each 1; has k-dimension one and 2 has k-dimension two. Then
the Loewy and socle series of the projective covers of these five simple

modules have the following form.

1; 2

2 191, 15 13
1; 1p 1, 222

2 lo1; 12 13

1; 2

where {i,j,%',¢} = {0,1,2,3}.

Then, let's go into the case of the principal block A of AG. Namely,



2nd Observation : The principal block ideal A of the group algebra kG
has five non-isomorphic simple modules Sy = kg (the trivial module), S,
S, Sa, S4, where Sy, Sz, S3 have the same k-dimension (g—1)(¢®—g+1)/3,
and S4 has k-dimension g2 — q. Then the Loewy and socle series of the

projective covers of these five simple modules have the following form.

1 4
4 0123

jk e 444
4 0123
i 4

where {i, j,¥,€} = {0,1, 2,3} and we write m for S, for m =0,1,2,3,4.

Now, let’s look at these two diagrams. They surely have the same shape.
Thus, it would be natural to ask whether the two blocks A and B are Morita

equivalent. Namely,
Question : Are A and B Morita equivalent ?

Answer (by Naoko Kunugi and the author) : YES!

Acknowledgements : The author would like to thank the
organizers of this meeting (Alcom 97) for such a beautiful conference
celebrating 70th birthday of Professor Michio Suzuki and for giving the
author an opportunity to give a talk there. Especially, he would like to
express his great thanks to Professors Eiichi Bannai and Hiroshi Suzuki.
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The Essentials of Monstrous Moonshine

JOHN MCKay

Centre Interuniversitaire en Calcul Mathématique Algébrique,
Concordia University, Montreal, Canada

This is a fast introduction to Monstrous Moonshine.

All our functions expanded at T = 100 have the form:

(*) fr)y ==+ ag*, g=e¥", ¥(r)>0, ar€C

k>0

-

We further assume that ap = 0 (standard form) for convenience, and that a; € Q (to ensure trivial
Galois action). For replicable functions there is a reasonable conjecture that the a; are algebraic
integers - this, too, we assume. We find that the coefficients of classical modular functions known
to Jacobi, Fricke, and Klein, are related to the characters of M, the Monster simple sporadic
group, in that, to each conjugacy class of cyclic subgroups {g}, of M, there is such a function, j,
with coefficient of g* = Trace(Hi(g)) for some representation, Hi, (the k** Head representation)
of M.

In November 1978 I wrote to John Thompson that 196884 = 1+ 196883, relating the coefficient
of ¢ in the elliptic modular function, j(7), to the degree of the smallest faithful complex repre-
sentation of M. Little was then known to me of the degrees of irreducible characters of M but I
did have access to those of Eg(C) and related an initial sequence of them to the g-coefficients of
the cube root of j. This was quickly disposed of by Victor Kac [Kac], see also [Lep].

There are 194 conjugacy classes of M, 172 classes of cyclic subgroups, and 171 distinct functions
Jg- This, and more, is to be found in Conway-Norton [CN]. All these functions are genus zero

in that this is the genus of the compactified Riemann surface é}-’\T{ where G, is the discrete
invariance group of f, acting on the upper half-plane, H.

By axiomatizing the properties of these functions, we arrive at the notion of a replicable
function, as one which behaves well under a generalized Hecke operator. These are now under
scrutiny. My hope is that their properties will yield an intrinsic description of M.

We study replicable functions, which generalize a degenerate family called by me the “modular
fictions”, namely f(r) = 1/g + ¢g. Cummins [CuN] has proved these are the unique replicable
finite Laurent series, (Vk > ko, ax = 0). A further useful property to impose is that the replication
power map (defined later): f — f(", is periodic, namely ¥n > 1, f(Ed(k)) = £(n) When this

Research supported by the Natural Sciences and Engineering Research Council {Canada) and Fonds pour la
Formation de Chercheurs et I’Aide & la Recherche (Québec)
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is so, the modular fictions reduce to three cases, 1/q, 1/¢ + ¢, 1/q — g, corresponding to exp,
cos, and sin respectively. An amusing consequence of their replicability is that sin(2kt) is not a
polynomial in sin(t), whereas cos(2kt) is a polynomial in cos(t). This follows from a study of the
modular equation [Sil], [Mar] for f, with formal coefficients [McK]. The modular fictions play no
further part in what follows.

Replicable functions are generalizations of the prototype, j(), the elliptic modular function
which is characterized by its form and the property under the action of Hecke operators [Serre]:

Va2, nT(ir) = 3 i(*F) = Paslito),
0

where T}, denotes the standard Hecke operator, and P, j = P, is the Faber [Fab, Cur] polynomial
of degree n. The notation is to remind one that the coefficients of the Faber polynomial come
from its argument.

One characterization of these polynomials is that

Pus(f) - qi € ¢Cllq]].

We find

A(f)=/,

Py(f) = f* - 2a,

Py(f) = f* ~ 3a1f — 3ay,

Py(f) = f* ~4a, f* — 4a2f + 2a] — das.
More generally:

Py(f) = det(An + 1)

where

( 28;2 ell 1 O \

An = - .
(n—2)en—2 en—3 €p-a -+ 1
(n - l)e,._l Cpn-2 €p-3 °°°* €) 1
\ nea €n-1 €n—2 ‘*° €2 81)

with e; replaced by (—1)*ax—;.

This is related to expressing the power sums in terms of elementary symmetric functions.
Truncating f and replacing q by 1/z, we derive: F(z) = z" + apz"~! +:-+ + ap—; and we may
identify the {ex} with the eclementary symmetric functions of the roots of F(z). Note that the
power sum si € Z|ao,...,ar-1].

Expanding Pn,;(f(7)) in powers of ¢, the Grunsky [G] coefficients, hm », are defined by

Pa(f(r)) = ql +7 3 hmag™,

m>1



We generalize j to a family of replicable functions (of standard form), )k > 1, for which

(n)(ar + b) - P,.J(f(r)).

ad=n
0<b<d

This yields a new Hecke operator, T, with hm,n as the coefficient of ¢™ in T.(f ). It is Grunsky’s
law of symmetry that Apmn = hpm.

We now have an inductive definition of the important “replication power map” taking f to
™, since f{"(n7) = Pa(f) — ¥’ where 3_’ omits the single term with a = n. This imposes
the condition that the right side is a series in q". We take the principal branch to define f(™)(7).
The replication power map f to f{"), f replicable, restricts on Monstrous Moonshine functions
to the map induced on them by taking g € M to g". Norton [N], in a important paper, defines
the generating functions for the Faber polynomials and the A, ., unaware of the work of Faber
[Fab] and Grunsky [G] preceding him. He gives an definition of replicability equivalent to the
above, [ACMS], namely (paraphrased):

Definition. A function is replicable if gcd(m,n) = ged(r, s) and lem(m,n) = lem(r, s) implies
Am mn = h,-' . o

[This suggests seeking an interpretation of the {hp n} in terms of double coset representatlves ]
Norton also proves his basis theorem:

Theorem. The twelve coefficients ag, k € {1,2,3,4,5,7,8,9,11, 17,19, 23}, determine a
replicable function.

This remarkable result is useful for computing with replicable functions.

Newton’s relations, which derive from the form of f, between the a; and the Faber polyno-
mials, together with Norton’s defining properties of the {/im,n}, show that replicable functions
correspond to K -points on a variety. Norton has proved that K lies in a composnte of quadratic
extensions of Q. -

The Newton relations are equivalent to the generating function identity:

a(f(a) - f(2)) = exp(= 3 Pa(f(D)e"),

n2\

with p = exp(2#io) etc., where we abuse notation using f(p) and f(q) instead of f{&), f(7).
There is an outstanding conjecture of Norton [CuG], [CuN]:

Conjecture 1.2.. A function f =q~! + Z.>. a;q' with rational integer coefficients is replicable
if and only if either f is a modular fiction or it is the Hauptmodul for a group G C PGL,(Q)>°
satisfying

1. G has genus zero,

2. G contains a finite indez ['o(N),

8. G contains z+— z+k if and only if k € Z. v

Our model is Dedekind’s (1877) [Ded] construction of j(7} in terms of its Schwarz differential
equation.
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We define the Schwarz derivative {f, 7} to be 2(f/f) — (f'/f')?, where differentiation is
with respect to 7. When f is a modular form, {f, 7} increases the weight by 4 and preserves
the invariance properties, thus when f is a Hauptmodul, we have {f,7} + R(f)f'* = 0 with
R(f) = N(f)/ID(f))?, the differential resolvent, and f' = df/dr of weight 2. When expressed
in partial fractions, we see R(f) gives ramification data (in N) and also the critical points of f
(namely those values of f for which f'(r) = 0).

iFrom Dedekind (with normalization 1728 j(t) = 1/q + 744 4+ 196884 ¢ + - - - ) we find

Loh 1ok 1-hd
G-12 " j? iGi-1) "’
with ramification multiplicity 2 at j(exp(ni/2)) = 1, and 3 at j(exp(wi/3)) = 0.

To each f, there is a corresponding conformal invariance group, Gy acting on ‘H. From R(f)
we can find the critical points in H, and the ramification gives the angles between bounding
circular arcs intersecting at a critical point. A fundamental domain can be constructed and, once
edges are identified, a presentation found for the group generated by hyperbolic reflections in the
bounding circular arcs in H. The Schwarz derivative takes us from f to Gj.

Over 600 Hauptmodules, f, as above, are now known, some of which appear in [FMN]. For
each, R(f) has been computed. The Galois group of D is of “dihedral type”, in that it has a
unique cyclic subgroup of index 2. This provides an ordering of the critical points for Ohyama’s
construction of dynamical systems [Ohy1]. With a little more work, we should obtain a dynamical
system of differential equations for each f, as shown by Ohyama [Ohyl] and exemplified by
the Halphen system. This system was first studied in 1881 [Hal], and is a reduction of the
self-dual Yang-Mills equations. For us, it is derived from the I'(4)-Hauptmodule, namely f =

R(j) =

(n(r) /n(4-r))8. This has a triangular fundamental domain with angles (0,0,0) at cusps (0, 1, 00).
It is remarkable that we have {f, 7} 4+ E4(27) =0, where E4(7) is the Eisenstein series of weight
4:
E(r)=1+240 Z o3(n)q".
n>1

In a further paper [Ohy2| the function f = (17(-1')/1;(91')):l appears and we find it satisfies the
Schwarz equation above with E4(27) replaced by E4(37).
Any function of the form (#) satisfies

df 1 ¢
dq + ? exp(—v'Hv) =0,

where v' = (q,¢%,¢%,...), and H is the semi-infinite matrix of Grunsky coefficients.
To each Hauptmodul there are two differential objects:
- (1) A Schwarz equation, and
(2) a dynamical system.
There is also a pseudo-differential operator (roughly-treating the functions as Laplace trans-
forms) which has not yet been studied.
A purpose of this approach is to learn more about analytic aspects associated with the Monster
in the hope of better understanding the relation between the simple Lie groups and the sporadic
simple groups.



Witten’s ideas suggest there may be a finite-dimensional spin manifold with M acting on its
loop space. A discussion of this is found in the book [Hirz].

Acknowledgements: I thank the organizers of the Suzuki conference for inviting me, and especially,
Professor Miyamoto for his hospitality in making it possible.
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The finite group theory on vertex operator
algebras

Masahiko Miyamoto

Institute of Mathematics
University of Tsukuba
Tsukuba 305, Japan

0 Introduction

I put a large title, but I believe this is true. 1 was trying to use the group theoretic
arguments for the theory of vertex operator algebras (shortly VOA) and I can now say
that many techniques of the finite group theory are useful for the study of VOAs and
there is a large area in the research of VOA for finite group theorists. A vertex operator
algebra”, is a conformal field theory ( in the physics ) itself with a mathematically rigorous
axioms, but it comes from a famous moonshine conjecture of the largest sporadic simple
finite group "Monster”. Recently, a vertex operator algebra is getting very popular in
many subjects of mathematics. Compare to the finite group theory, it has an "infinite
dimensional” vector space V' with "infinitely many products” x, : n € Z and complicated
relations called Jacobi identity (or Borcherds identity). Also all calculations are done by
formal power series, "distributions”. In spite of these stuffs, it has many properties of
the finiteness. The most important thing is that if a vertex operator algebra has a finite
automorphism group, the study of the vertex operator algebra becomes very interesting
and it is an area for the finite group theorists.

The groups appear in the study of VOAs are not only the monster simple group, but
also other simple groups. Actually, I will show you one example of VOA whose the full
automorphism group is E7(2) later. This is the second of an infinite series of VOAs in
my constructions with the finite automorphism groups and the monster is the first one.
My construction is not difficult. It is true that it is a very hard and complicated job if we
construct a VOA from the beginning. But, we now have a lot of the known results about
the conformal field theory done by many pioncers, for example, Feigin-Fuchs, Tsuchiya-
Kanie, etc. As finite group theorists, we should aim the next steps. Every vertex operator
algebra V contains a sub VOA called Virasoro algebra Vir, it is an axiom. My point is to
factorize V by the action of Vir( or a suitable sub VOA W). Then some VOAs satisfies
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that "the set of intertwining operators V/W" looks like a finite object D, like a code, a
lattice, and a finite group. For such a VOA, we can use the finite group theoretic methods.
Conversely, we can expect to construct a VOA from the known and easy VOAs W and a
finite object D.

The advantage of studying a vertex operator algebra with a finite group does not only
offers a problems of the finite group theory, but also offers a relation between a finite
group and a modular form. For example, we have many identities as Kitazume's talk in
the conference.

I will summarize my results and separate my talk into five parts.

(1) A brief explanation of vertex operator algebras.
(2) Merits of automorphism group of vertex operator algebra
(2.i) Examples,
(2.ii) Determination of automorphism groups,
(3) 2A-involution and Z;-codes (Z;-codes),
(4) 3A-triality and Zj-codes,
(5) Characters of automorphism groups
(5.1) Application to vertex operator algebra
(5.11) Application to character theory

1 A brief introduction to VOA

In this section, we recall the definition of YOA and intertwining operators from [FLM]
and [FHL].

Definition 1 A vertez operator algebra is a Z-graded vector space V = Y2V, with
finite dimensional homogeneous spaces V,,; equipped with a formal power series
Y(v,2) = Y vaz™" € End(V)|[z,27"]]
nezZ

called the vertez operator of v for each v € V satisfying the following (1) ~ (3).
(1) There is a specific element 1 € Vp called the vacuum such that

(1.a) Y(1,2) = ly and

(1.) vo;1 =vandv,1 =0 forall n > 0.

(2) There is an specific element w € V; called the Virasoro element such that

(2.a) {L(n) := Wa4.1} is a Virasoro algebra generator, that is, they satisfy

m’—-m

[L(m)a L(ﬂ)] = (m - n)L(m + n) + 6m+n.0Tca



where ¢ € C is called the rank (or the central charge) of V,
(2.b) the L(—1)-derivative property:

[L(-1),Y(v,2)] = dizY(v, z)

(2.c) L(0)v, = nly,.
(8) Commutativity: foranyu,veV

Y(v,2)Y(u,w) ~ Y(u,w)Y(v,2).

Here A(z1,22) ~ B(z1,22) means thal there is an integer N such that (z1—z,)N {A(z), 22) -
B(z1,23)} = 0.

Since VOA is a kind of algebra, we can think of its modules, irreducible modules,
factor modules, completely reducible.

Definition 2 A module for (V,Y,1,w) is a Z-graded vector space M = @n3oM, with
finite dimensional homogeneous spaces M,; equipped with a formal power series

YM(v,2) = ZE:zv.'." 2™ € (End(M))[[z, 7"]]

called the module vertez operator of v for v € V salisfying:
(1) YM(1,2) = 1m;

(2) YM(w,2) = T LM(n)z~""" satisfies:

(2.a) the Virasoro algebra relations,

(2.b) the L(—1)-derivative property:

YM(L(-1)v,z2) = %YM(U, z),and

(2.c) LM(0)p, = (kn)lm, for somek, € C.
(8) Commutativity.
YM (v, 2)YM(u,0) ~ Y™(u,w)Y¥(1,2)

(4) Associativity:
Y (2nv,2) = YM(u,2),Y¥(0,2).

Joru,veV and Y(u,z) = Tuaz™"".
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Definition 3 Let(V,Y,1,w) be a VOA and let (W*,Y"), (W?,Y?) and (W3,Y?3) be three
1

V-modules. An intertwining operalor of type is a linear map

w2 w3

I(%,z): W? — (Hom(W3,W!)){z}
u = I(u,2) =T,eqtnz™"

satisfying:
(1) L'(—1)-derivative property:

I(L(-1)u,z2) = dizl(u,z).
(2) Commutativity: for v € V,u € W?,
Y(v,2)I(u,21) ~ I(u,2,)Y*(v, 2)

(3) Associativity:
I(viu,z) = Y(v,2)al(u,z2).
Here the n-th normal product Y (v, z),I(u, z) for intertwining operator is given by

Res,, {(z1 — 2)"Y' (v, 21)[ (v, 2) — (—z + z1)" I (u, 2)Y3(v,2)}

and Yi(w,z) = ¥, ez Li(n)z"2.

Definition 4 Iy (W’ W

) denoles the set of intertwining operalors of lype

wh
(W’ w2 ) It is a vector space and its dimension is denoted by N‘“’y;.wg. In order to

denote the dimensions, we use an ezpression
2 3 _ w
W* x W = ;V: Nw,'w;u’,

called “fusion rule”, where W runs over all irreducible V-modules. We note thal N,v,‘,’,lw;
might be infinite, but we will deal only the case where Yy Nl.%.W’ is finite.

wt
Definition 6 To simplify the notation, we sometimes omit V in Iy (W’ W:")'

Remark 1 Since L(—1) satisfies the property of the derivation, it offers us a relation
between a differential equation and a VOA.
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If a VOA has only a finitely many irreducible module and all modules are completely
reducible, then such a VOA is called "rational”. For a finite group theory, we will treat a
"rational VOA”, Since each irreducible module denotes a particle in Physics and a number
of kind of particles should be finite, it is natural to study this kind of VOA. Especially, a
vertex operator algebra with only one irreducible module is called "holomorphic”. This
is one of most important VOAs for the finite group theory.

2 Automorphism

An automorphism rofV is one-to-one endomorphism of V satisfying 7(v x, u) = 7(v) x,
7(u) and keeping the grade. Let G be an automorphism group of V, then each V, is a
G-module and so we can get a character tr(g)|v, like a finite group theory. The advantage
of VOA is that since we have many V,;s and so we have a formal power series

ch(g,z) = Y tr(g)lvaq”,  q=€".

So the set of characters of a finite group plays an interesting role as a set. For example,
[Zhu], [Dong, Li, Mason) have showed that if V is holomorphic, then

g~ ch(g,z)

has a modular function with some congruent groups. Also, as [ told you the Virasoro
element has a property of the derivation and we can get many differential equations
related to the characters of finite groups.

For example, the following is a joint work with M.Kitazume and H.Yamada. In 1991
Borwein showed

a(q)* - b(q)* = c(q)®

for . ,
a(q) = T(nomyeza ¢~ T
b(q) = Tinmyezz g3 Him+ Hnt D)’

c(q) = Tamyez? wm gt Fmam?
by using the modular forms, where g = ¢?™*, After him, several proofs are given by using
a certain identities of Ramanjan [Bernat], infinite products [BBG], and codes and lattice
[Sole’].
We can explain the explicit meaning of the both sides of this equality in terms of vertex
operator algebras. The both terms are A(z)® times of characters of conjugate two auto-
morphisms of the vertex operator algebras of Eg-type. We can apply these arguments to

102



many vertex operator algebras. Namely, a vertex operator algebra V = ¥V, and a pair
of conjugate two automorphisms 7 and o of V are given, then we have an identity:

Yo tr(7)lvag™ = 3 tr(0)vag™

So the characters of finite group play an interesting role as a set. For example, if V is
holomorphic, then

Yo tr(T)vag” = 3 ir()lvag™

For this result and related topics, see the paper by Kitazume in this book.

3 2A involution and Z,-code (Z;-code)

The important relation between a vertex operator algebra and a finite group is that some
structure of sub VOA offers an automorphism of VOA.

For example, there is a classical conformal field theory called Ising model L(3,0). This
has been studies well. [ have proved that if VOA V contains an Ising model L(},0), then
it defines an automorphism 7 of order at most 2. [M1996(1)]. Actually, on the moonshine
VOA V1, it defines a 2A-element of the monster simple group. Use this property, we can
easily prove the finiteness of the full automorphism group of the moonshine VOA. Also
we can expect the phenomenon on 2A-elements would be explained by this definition. If
VOA V contains L(},0) and 7 is trivial, then we can define another automorphism ¢ of
order at most 2. This automorphism satisfies a nice property. It is truly a generalization
of the reflection. Such automorphisms satisfy the property of 3-transpositions.

As an application of binary codes, I prove the following: If we have an even linear
binary code D, then we can construct a new VOA Mp called a code VOA [M1996(2)).
The construction is very simple, but they have interesting properties for the finite group
theory. For an example, its representation has a deep relation with the representation
of an extra special 2-group [M1997(1)]. Also, as in the paper of Kitazume in this book,
many VOAs of this kind have a 3-transposition group as the full automorphism group.
Using the representation theory of code VOAs and a Z,-code, we find a new construction
of the moonshine VOA [M1997(2)] and [M1997(3)].

The main result in our construction is:
Hypotheses I1I
(1) D and S are both even linear codes of length 8 and S C DN D*.
(2) For any a, 8 € S, (a # B), there is subcode E, @ E, of D and maximal self-orthogonal
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subcodes Hy and H,4p of Kjp and K,4p, respectively, such that

(2.1) E, and E,¢ are direct sums of [8,4,4]-Hamming codes

(2.2) Supp(E,) = a and Supp(E,<) = o,

(23) Hp + Eq + Eoe = Ha+ﬂ +E, + Eac,

where K, = {y € D : Supp(v) C Supp(c)} and a° = (1%%) — a is the complement of a.
(3) There is an S-graded Mp-module V = @,¢sV* such that each V is an Mp-submodule
with A(V?) = a. In particular, V) = Mp as Mp-modules.

(4) Fora,8 € S - {(0")} and a # 8,

MD ®V°$Vﬂ$ Va-l-ﬁ

has a simple VOA structure containing Mp as a sub VOA.

Here iz(V") denotes a binary word of length n satisfying that if a T-submodule is
isomorphic to ®L(3, k) then &; = ;- if and only if i € Supp(h(V*)). We call h(V®) "a
-word of Ve.”

Our main aim in this paper is to prove the following theorem:

Theorem Under the above assumplions (1)~(4) of Hypotheses II,

V= @aESVO

has a structure of simple VOA with Mp as a sub VOA. The structure of verlez operalor
algebra is uniquely determined up to Mp-isomorphisms.

Remark 2 Let’s explain the above assumptions. (1) and (2) are conditions for the codes
D and S. (8) is just a setting. Hence, the important condition is (), but it is still a local
condition. Among the conditions on the codes, (2) looks complicated. By (2.1) and (2.2),
there is a tensor product of Hamming code VOAs such that each V° decomposes into the
direct sum of irreducible modules salisfying the condition (A). We use the assumption
(2.3) in order to make the calculation easier. We are expecting that the similar result
holds without the condition (2.3).

By this construction, if D = S*, then we can construct a holomorphic VOA. Generally,
from any above D and §, we can get a holomorphic VOA corresponding to St and S.
Actually, I constructed many holomorphic VOAs with the finite full automorphism groups.
I want to characterize their full automorphism groups, but it is nol an easy job for the
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researcher for VOAs. We need a lot of knowledge of the finite group theory to characterize
them.

For example, [ recently succeeded to characlerize one of them. It is a VOA with rank
48 and the full automorphism group is E4(2).

4 3A-triality and Z3-codes

The important finite objects for VOA are not only the binary code and an involution.
We can also ezpect to get a similar result for other number. For ezample, we can expect
an automorphism of order 8 from the Pott model L(g,o). This should correspond to 3A-
triality of the monster simple group. In this case, the ternary codes will be also important.
The paper of Yamada in this book is the initial work for this part. We can also construct
a new VOA by using ternary codes. For an automorphism of order greater than or equal
lo 5, we don’t know anything now, but we can expect a similar arguments.

5 Characters

Let G is a finite automorphism group of V and H a subgroup of G. Assume that x is an
irreducible character of G. In their paper [DM], they studied the sub VOA VH = {ve V :
h(v) = vWh € H} of H-invariants and the subspace VX on which G acts according to the
character x and they conjectured the following Galois correspondence between sub VOAs
of V and subgroups of G and proved il for an Abelian or dihedral group G [DM, Theorem
1.

Conjecture 1 (Quantum Galois Theory) Let V be a simple VOA and G a finite and
Jaithful group of automorphisms of V. Then there is a bijection between the subgroups of
G and the sub VOAs of V which contains VC defined by the map H — V4.

The following is a joint work with Akihide Hanaki. We translated the above conjecture
into a problem of finite group. The following is equivalent to the quantum Galois theory
Jor the solvable group G.

Conjecture 2 Let G be a finile group and {My : x € Irr(G)} be the set of all sim-
ple modules of G. Assume M\, is a trivial module. Let R be a subspace of M =
®xetrr(c)My containing M;. Assume that R satisfies the following condition: for any
G-homomorphism# : M@ M — M, n(R® R) C R. Then there is a subgroup H of G
such that R = MY,
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For ezample, we can check that this conjeciure is irue for A,.

6 After the conference

After the talk at the conference, D. Tambara has proved the above conjecture. So now
my conjeclure becomes a theorem and we have the quantum Galois theorem for solvable
groups.

Namely, we prove the following theorems:

Theorem 6.1 (D.Tambara) Let G be a finite group and {M, : x € Irr(G)} be the
sel of all simple modules of G. Assume M, is a trivial module. Let R be a subspace of
M = ®yeirr(c)Mx containing M\,. Assume that R salisfies the following condition: for
any G-homomorphismrm : M®M — M, n(R® R) C R. Then there is a subgroup H of
G such that R = M¥.

Theorem 6.2 (A.Hanaki, M.Miyamoto, D.Tambara) LetV be a simple VOA and
G a finite and faithful solvable group of automorphisms of V. Then there is a bijection
between the subgroups of G and the sub VOAs of V which conlains VC defined by the map
H—VH,
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Primitive Trinomials and Orthogonal Arrays
over GF(2)

Akihiro Munemasa
Graduate School of Mathematics
Kyushu University
Fukuoka, 812-81
Japan

The maximum-length shift-register sequences are widely used in generating pseudo-
random numbers. The generation of shift-register sequences is particularly fast when
the characteristic polynomial is a trinomial, that is, a polynomial with three terms.
However, several authors pointed out that there are statistical biases in shift-resister se-
quences whose characteristic polynomials are trinomials. The purpose of this paper is to
investigate such shift-register sequences from the viewpoint of orthogonal arrays.

Let GF(2) denote the field of two elements. Given a vector v = (vy,... ,v,) € GF(2)",
we define

Supp(v) = {ilv; =1, 1 <i<n},
wt(v) = | Supp(v)|.

A vector subspace C of GF(2)" is called a linear code. The minimum weight of C is
defined by

min{wt(v){0 # v € C}.
The dual code of C is defined by
C* ={weGF(2)"|v-w=0for all ve C},

where v-w =31 v;w;. For a subset T = {i;,4,,...,%)} of {1,2,...,n}, we denote by
v|T the restriction of the vector to the coodinate positions T, that is,

v|T = (v, ... ,v,) € GF(2)".
For a subset C of GF(2)" and a vector b € GF(2)* with 1 <t < n, we define
X(C) = l{v € Clo|T = b}

This means that we count the number of vectors v € C whose restriction to T coincides
with a given vector b of a shorter length. A subset C of GF(2)" is called an orthogonal
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array of strength ¢ if AT(C) = |C|/2" holds for all t-subset T of {1,2,... ,n} and for all
vector b € GF(2). Let me illustrate the situation. Regarding C as a matrix, because C
is a set of vectors, we may arrange its elements as row vectors of a matrix. Now T is a
set of columns. AT(C) is the number of occurences of the vector b in the submatrix of C
consisting of columns corresponding to the set T'. Note that there are 2' choices for b so
the number |C|/2* makes sense.

If one takes C = GF(2)", then C is an orthogonal array of strength ¢ for all ¢. Another
remark s that an orthogonal array of strength t is automatically an orthogonal array of
strength s for any s < t. The strength ¢t measures uniformity of distribution of C in
GF(2)".

Minimum weight of codes and strength of orthogonal arrays are related by duality,
according to the Theorem of Delsarte. In general, an orthogonal array does not have to
be a subspace, but when it is a subspace, then the following theorem holds.

Theorem 1 (Delsarte). Let C be a linear code over GF(q). Then C is an orthogonal
array of mazrimal strength t if and only if CL has minimum weight t + 1.

Here ‘maximum’ means that ¢ is the largest integer such that C is an orthogonal array
of strength ¢.

In other words, if one has a linear code with large minimum weight, then its dual is
an orthogonal array with large strength.

The next theorem describes the behaviour of an orthogonal array of strength ¢ — 1
when we take a set of ¢ columns (or coodinate positions). When one takes T to be a
t-element set, then A7 (C) may no longer be 12—(‘:1 which is the average, but indeed, AT (C)
is equal to 129:1 unless you are in the exceptional cases here. In the example we will discuss
later, the exceptional case is indeed minority.

Theorem 2. Let C be a linear code of length n over GF(q) and assume that C is an
orthogonal array of strength t — 1. Then for any t-subset T of {1,... ,n} and for any
t-tuple b € GF(q)*, we have

if T = Supp(u) for some u € Ct,
otherwise.

v | Sdr oS
X (C) = { i
ql

Next we want to define primitive polynomials. Let f(z) be an irreducible polynomial

of degree m over GF(2). The polynomial f(z) is called primitive if a root of f(z) in

GF(2™) has order 2" — 1. If a root of f(z) has this property, then so does any other

root. This means a root of f(z) is a generator of the multiplicative group of the splitting
field. If we write f(z) as the leading term plus the sum of the rest

[(z)=2"+ z az'

i=0
then we can define a shift-register sequence to be a sequence satisfying the reccurrence
relation determined by f(z) with a nonzero initial value:

m-1

Qhgrn = z CiBl.yi,s (aﬂp ay,y ... ’am-l) # (0, v :0)

=0
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Of course you can define shift-register sequence for any polynomial, but when f(z) is
primitive, then the sequence has least period 2™ — 1. Since any segment of length m
determines the rest of the sequence by the recurrence relation, this means that all nonzero
vectors of dimension m appear in {at}2,.

As we wrote earlier, the strength t of an orthogonal array is a measure for uniformity.
We want to apply this measure to determine uniformity of shift-register sequences. In
order to do this, we need to convert shift-register sequence to a subspace of GF(2)". An
obvious way to do this is to take all segments of length n, m < n < 2" — 1. To avoid
triviality we will assume m < n < 2" — 1. A little bit artificial, but we want to add the
zero vector which can not appear as a segment of the sequence. So we denote by C,, the
set of all subsequences of length n, together with the zero vector of length n. Then C,
is a GF(2)-vector subspace of the vector space GF(2)". If n < m, then C, = GF(2)". If
n > 2™ — 1, then the periodicity of the sequence implies that there exist two coordinate
positions such that any vectors in C,, has the same entries in these positions. So it is a
sort of duplicates.

An important property of C, is that it is an orthogonal array of strength 2. This
can be proved directly, or if you notice that Cg._, is the so-called Hamming code. By
Delsarte’s theorem, Caw_; is an orthogonal array of strength 2. But when you make n
smaller, then the property of being an orthogonal array is preserved. Let us apply the
previous theorem with ¢ = 3. In order to know when these irreugularities occur, we need
to determine C2, and the elements of C} of weight 3. C} is easy to determine but in
general, it is difficult to determine the set of elements of weight 3 in C1.

We are interested in elements of weight 3 in C}' which may be regarded as polynomials
of degree less than n with only three terms. A polynomial with three terms is called a
trinomial. Note that C} depends on the choice of f(z), and there are many primitive
polynomial of given degree m, so it is very difficult to say anything exact about the set
of trinomials of degree less than n divisible by f(z). But when f(z) itself is a trinomial,
then we can actually determine all trinomials of degree at most 2deg f divisible by f(z).

Maybe we should say a few words about why we assume f(z) to be a trinomial. In
the early days of pseudorandom number generation, shift-register sequences were used to
generate pseudorandom numbers. Shift-register sequences are extremely easy to generate,
yet it has very long period. Furthermore, if f(z) has very few terms like 3, then the
generation of shift-register sequences is very fast, because tlie recurrence is very simple.
This is why people were interested in primitive trinomials. So we want to investigate
trinomials divisible by a given trinomial.

The next theorem determines trinomials divisible by a given trinomial. The trinomial
f(z) doesn’t have to be primitive, or even irreducible. The proof of this theorem is purely
combinatorial.

Theorem 3. Let f(z) = z" + z! 4+ 1 be o trinomial such that m > 2I, m > 4, and
assume that either m is not divisible by l, or | = 1. If g(z) is a trinomial of degree at
most 2m divisible by f(z), then g(z) = z489-"f(z) or g(z) = f(z)%.

From this we obtain our main result.

Main Theorem. Let f(z) = 2™ + 2! + 1 be a primitive trinomial of degree m over
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GF(2), and let a = (ag, a), 62,...) be the sequence defined by
Qg = Q41 + a1 (k =0,1,2,.. ) (l)

with (ag,... ,ay-1) #(0,...,0). Let n be a positive integer salisfyingm <n <2m+1,
and let C,, be the set of all subsequences of a of length n, together with the zero vector of
length n:

C,, - {(aL.,.. . ,ak+.._1)|k = 0, 1,2,. .o } (8] {(0, . ,0)} (2)
Define
T = {{i,i+1,i+m}1 <i<n-m} ifn < 2m,
"l {{ii+Li+m}1<ign-—m}u{{L,2+1,2m+1}} fn=2m+1.

Then for any 3-subset {i1, 15,43} of {1,... ,n} and for any triple b = (b, b3, bs3) € GF(2)?,
the number of elements v € C,, satisfying vi, = by, v;, = by, v, = by is Oy, 48,485,022 if
{ir,t2,13} € T, 2m-3 otherwise.

The point is that the number of exceptional cases is rather small compared with the
set of all 3-elements subsets of {1,2,... ,n}.

Remark 4. One might wonder how much Theorem 3 can be improved. The weight
enumerator of the Hamming code Cja_; is known [6]. In particular, there are (2" —
1)(2"~! — 1)/3 trinomials of degree less than 2™ — 1 divisible by a primitive polynomial.
Thus we can not expect to find a small set of exceptions like 7;, consisting of the set of
supports of elements of weight 3. It may be interesting to determine trinomials of small
degree divisible by a primitive polynomial f(z), when f(z) has more than three terms. A
- particular case of this question was raised by Takashima [8]. It would be very interesting
if we could find primitive polynomials which maximize the integer n such that C,, is an
orthogonal array of strength 3. For a primitive polynomial f with more than three terms,
C. can become an orthogonal array of strength 4, but such an integer n can not be very
large due to Rao’s bound

1+n+ ('2') < [Cul = 2.
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1 Introduction

1.1 Basic notions

Let F3 = GF(3) be the Galois field of three elements. Let V = F% be the
vector space of dimension n over F;, equipped with the usual inner product
which is denoted by

(x| )’) = + oy + ¢ < F Tl

where
X = (21)221 s szu)a Y= (yhyzi’ "iyu) € V.

The Hamming distance d(x, y) between two vectors x and y in V is defined
to be the number of indeces ¢ with 1 < ¢ < n such that z; # 3 . The
Hamming sphere S,(u) of radius r with center u € V is the subset of V
defined by

Sr(u) = {x| d(u,x) <r} .
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A ternary linear code C is a vector subspace of V. The dual code C* of C
is a subspace of V' defined by

Ct={xeV|(x,u)=0VueC}
A self-dual code is a code C which satisfies C = C*.
When bfC is a ternary self-dual code, it is known that

d(C) < 3 [11'5] +3.

A self-dual code C satisfying d(C) = 3 ['1%] + 3 is called an extremal ternary
self-dual code.

1.2 Statement of the Problem

The covering radius problem is to determine the least value r for which the
condition

N V = U S,.(l.l)

ueC
holds for a given cede C.

Notation : The least such r is denoted by p(C).
It is known that p(C) is bounded by

15521 < p(0) < s(CH),

where d = d(C) is the minimal distance of C and s(C*) the number of
nonzero distances in C*.
Another formulation of p(C) is
p(C) = gg’;(ﬁryggc wi(z))

= (i vi(e)

Here min,ev4c wt(2) is the minimal value of the weights in the coset v + C
(an element of the coset space F3/C ). This value is called the weight of the
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coset v + C. Thus p(C) is the maximal value of the weights of the cosets
v+C (for v € F3). The following table gives the values of | 43* ], s(C*), p(C)
for the first few ternary self-dual extremal codes.

code | |%2] | s(C*) p(C)
M2 1 1 1
84,3 1 2 2

[12,6,6] | 2 3 3
[16,8,6] | 2 4 4x
[20,106] | 2 5 54
[24,12,9 4 6 | ? ( possible to determine)
[28,14,9] | 4 7 ?
[32,16,9] | 4 8 ?
[36,812] | 5 | 9 ?
[40,2012]| 5 | 10 ?
[44,22,12] | 5 11 ?

The numbers marked * will be determined by our present paper.

In earlier papers ([1],(9],(10),{11]) we developed a method to determine the
covering radius of binary self-dual binary codes. In this paper we show how
to modify the method so as to apply to ternary self-dual codes.

2 An algebraic method to treat the problem

We treat the problem algebraically.
We aim not only the weights of the cosets but all the weights in each coset.
These informations are important for analyzing the effectiveness of the code
C.

To describe the various weights in a coset v + C, one may consider the
coset weight enumerator

Waro(X) = 3 X0t

ueC

or in a homogeneous form

Wyie(X,Y) = Z Xrowtlutv)yot{utv)
ueC
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To capture a property of the weight function wt, one may consider the fol-
lowing picture:

a a3 as a4 as Qg azy ag ay

The symbol a; implies the cardinality
a;=|{i|u,-=v.~=2 15i5n}|

Similarly a,, - -, ay are defined.
On this notations we introduce some functions:

usv = |{i|5#0,%#01<i<n}|
ulv = | {i|lui=vu#01<i<n}|
uv = [{{|u#0,u#0ui#y 1<i<n} |

By definition we have

u*xv = ait+aptagtag

ulv = a;+as
ulv = a;+ay,
and consequently
wt(u+v) = wi(u)+wt(u)—2usv+ ufv

= wt(u) + wt(u) — 2uljv — ufv
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Thus the coset weight enumerater W, c(X) is rewritten as

wv X) = le(V) Xul(u)—2uov+u|v
+c(X) ;

Our starting point is to consider a polynomial in three variables (we call it a
modified Jacobi polynomial):

M-Jac(C,v; X,Y, Z) = Y Xetulyuivzul,
ueC

From this polynomial one may easily obtain
XM M-Jac(C,v; X, X, X?)
= Exwl(u)-l-w!(v)x—ulvx-mrhu
u

— E Xw!(u)+wl(v)—ulv—2vhu
ueC

- E le(ll'l-v)
ueC

= Wyie(X)

The polynomial M-Jac(C,v; X,Y, Z) has a transformation formula :
M-Jac(Ct,v; X,Y, Z)

1 W[+ XY 4+ X279
= gt x| X

1-z (l4+wXY +u?XZ)(1+2X) (1+2X)(1+?XY +wXZ)

T32% (=X + XY +X2) ' (-X) 1+ XY +X2) "

M-Jac(C,v;

where |C| = 3F and w is the cubic root of 1 :w = **.
The polynomial M-Jec(C, v; X,Y, Z) is better understood by homogenizing
it :

HM-JGC(C,V; z,y,u,v, w) = E xu—ml(u)—wl(v)+uovywl(u)—uovuwl(v)—uovvulvwvhu.
ueC
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The homogenized modified Jacobi polynomial satisfies the identity :

HM’JGC(C'Ln viZ, v, w) =

1
WHM-Jac(C,v;z+2y,z—y,u+v+w,u+am + wlw, u + Wiy + ww).

Here we give the homogenization process and the dehomogenization process.
homogenization:

u\ vt y,Tv, ,IWw

n{_ M_ NN fehdl V£V =
2 (3)7 MeteclC,v; 250, (C0)

Z zn-!ul(u]—wl(v)+u-vywl(u)—u-vuwt(v)—novvulvwvhu'

ueC
dehomogenization :

HM-Jac(C,v,1,X,1,XY,X2) = M-Jac(C,v; X, Y, Z)

3 Connection with the theory of invariants
for finite transformation groups
3.1 Group of invariance for modified Jacobi polynomi-
als

If C is self-dual, it is known that 4 divides n. In this case HM-Jac(C, v;z,y,u,v,w)
satisfies

HM-Jac(C*, v;z,y,u,v,w) = HM-Jac(C,v; ', ¢/, ¢, V', v),

where
z 1 2(0 0 O T
v R ‘ 00 0]y
¢ |=—=]0 01 1 1 u |,
v V3 0 01 w w? v
w' 0 0|1 o w w

where w is a cube root of unity.
For further algebraic investigation it is convenient to assume that
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The code C contains 1 (all one vector).
This assumption will eliminate the important class of codes (code of length’s
not divisible by 12). We consider the picture :

so(u) s1(u) s2(u)

The condition (u, u) = 0 implies s, (u) + s,(u) = 0 mod 3.
The condition (1,u) = 0 implies s;(u) = s;(u) mod 3,
therefore we have
s1(u) = 0 mod 3 and s,(u) = 0 mod 3
The condition (1,1) = 0 implies that n = 0 mod 3 . If we remark that
so(u) + si(u) + s2(u) = 0,

we have sp(u) =0 mod 3.
Consider the substitutions

TR WE, YP Y, U WY, v Y, WP W

then each term of HM-Jac(C, v; z,y, ¥, v, w) is multiplied by w to the expo-
nent

n—wt(u) — wt(v) +urv+ wi(v) —ux*v = sp(u) =0 mod 3,
Therefore we have
HM-Jac(C, v;wz,y,wu,v,w) = HM-Jac(C, v; z,y, u, v, w).

If we denote the group of linear transformations, which leaves HM-Jac in-
variant by Inv(HM-Jac), then we have

Inv(HM-Jac) 3 L, = diag(w, 1,w,1,1)
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Likewise we have
Inv(HM-Jac) 3 diag(l,w, 1,w,w)

and
Inv(HM-Jac) 3 Ly = diag((12, C12, Gi2, G120 Cr2),

where ()2 is the 12-th root of unity.

One may remark that as the size of the code C (i.e n ) increases the group of
invariance Inv(H M-Jac(C) will become larger. For instance if C has length
24. then Inv(HM-Jac(C) contains diag((a4, (24, (24, 24, {24) , the diagonal
matrix with diagonal entries all {24 the 24-th root of unity .

Let G3 =< Ly, Ly, L3 > be the group generated by L,, L, and L;.

Our main strategy is first to study Clz, y, u, v, w]%*, the ring of polynomials
in the variables z, y, 4, v, w that are invariant under the natural action of Gj.
One major clue for this is the Molien series $¢,(A) for G3 . One has

q’G:(’\)
1+ 91X 4 474224 + 287230 4 11718
(1 - X12)5
1 + 96212 + 944202 + 40572% + 1181108 4 274410% + ...

3.2 Other groups of linear transformations

Let CW(C,z,y, z) be the complete weight enumerator for ternary code C:

CW(C,z,y,2) = Z zaoIUlyu(ulzn(u)’
ueC

where the exponents sy{u), s)(u), s2(u) are already explained.
As before we assume that C is self-dual and contains 1. Then we can show
that the group of invariance for CW(C, z,y, z) contains

] 1 1 1
M = —=|1 w v
l ‘/5 1 v w
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1 00
M3= (0(00)
0 01
100
M, = 010
(00«;)

We put
Gl =< Mln M2) MJ) M4 >,

the group generated by M;’s. The order of G, is 2592. One also has the
Molien series &g, () for G; :

1+ \M
(1 — A12)2(1 — %)

basic polynomials corresponding to the denominator of g, ()

ch (’\) =

(0) Preliminary polynomials.

ap = 2+y°+2°

a; = 3zyz

a; = Y +2%3 +4°8
a; = oyfad +8al)

as = af —1203

ag = af—20a} —8al
a; = aj(e) —a3)’

the denominator polynomials for g, ()) are given by ay, and a?.
The numerator polynomial for g, (1) is given by asag. The group G) has a
subgroup H,. H; consists of elements which leave the polynomial

(2 +4° + 2%)° = 12(23® + 232% + °2°)
invariant. The order of H, is 1296, and [G, : H,] = 2.
Molien series for H| is well known :

1
(1= 26)(1 — AZ)(1 — AB8)"

QHI(A) =
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A corresponds to the above polynomial of degree 6, A!? corresponds to com-
plete weight enumerator of ternary Golay [12,6,6] code, and A corresponds
to ag before given.

3.3 Ring of simultaneous invariants for G and its Molien
series.

The polarization of the complete weight enumerator of ternary self-dual code
is invariant under the natural action of

Gy, = diag(G'l, Gl)
< diag(Ml', Ml)) diag(M2| M?)i diag(M:h M3)i diag(M-i ’ M‘i) >

Molien series for G is
Pg,(2)

1

(1 = A2)4(1 — A3%)2 X

{14 442" 4 467207 + 1446A%° + 24872% + 28360 + 1992272 4 91328

+1772% 4 5148}

= 1+ 48" 4 6530 4 3776)%¢ 4 139521%8 + 394862 + 93570272
+195411)8¢ 4 3712901% + 653949218 4 . ..

The group G» has a subgroup H» of index 2 : Ha = diag(H,, H,). Molien
series $,(A) for H, is calculated by using computer algebra system. The
result is

(I’Hz(’\)

1
(L= X8)3(1 = X12)(1 — A18)2 )
{1+ 42% + 2921 4 78718 4 12822 4 163A% + 138A%6 4 72A%2
+30X%8 4 523}
= 14 72% + 482" 4 65327 + 2088 + 1688)X3" + 377636 + 7562142
+13952X% + 24110A% + 39486A%" + 619001 + . . ..
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At present we have not determined explicit polynomials (the first and the sec-
ond invariants ) for the rings of invariants C[z, y, z, v, », w|®* ,C[z, y, z,u, v, w]¥3,
and C|z,y,u, v,w]a’, although we know relations between them.

4 Explicit results.

4.1 Reformulation of the covering radius problem by
means of the invariants for G3

Let HM-Jac(C, v, z,y,u,v,w) be a homogeneous modified Jacobi polyno-
mial for ternary code C of length n, we can show that

X""HM-Jac(C,v, X, X2, X2, X2, X) = Wysc(X)

Basically, we can determine W, ,c(X) , if we could.know the values ufiv
and ulv for all u € C. Of many HM-Jac’s it is important to enumerate all
HM-Jac’s such that v’s is a coset leader of the coset v + C. Note that

v is a coset leader < wi(v) <wt(u+u) YueC
< 0<wti(u)~2u*sv+ufv YuecC
<~ wi(u)>22usv—ufv YueC

With this remark in mind we can determine the complete coset weight dis-
tributions of ternary self dual extremal codes of lengths of small size (e.g.
12,16,20,24). As to bigger sizes of codes one must know algebraic structure
of the ring Cl[z,y,u,»,w]. This knowledge will eliminate longer (in size
and in time ) computations. Also the knowledge will contribute to giving the
good lower bounds for p(C).

4.2 Ternary Golay code

Let Gi2 be the ternary Golay code of length 12. The complete weight enu-
merator CWg,, is known to be

CWyg,, = 224+ y"2+ 212 4+22(2%5 +1°2%+ 252%) +220(2%y 2 22+ 2340 22 +2°4°2°)
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We give homogeneous modified Jacobi polynomials.

First we remark that upto weight 2 each coset has unique coset leaders.
Otherwise we could show the existence of codeword of weight less than 6,
that is absurd. In the coset of weight 3 there are 4 coset leaders in each coset
of weight 3.

(1) There are 24 coset leaders of weight 1, and each such vector induces unique
homogeneous modified Jacobi polynomial :

HM-Jac(C,vy;z,y,u,v,w) =
uz!! + 12y (v + w) + 66z%° (v + w) + 110z%y%u
+132z%%u + 1652%% (v + w)

(ii) There 264 coset leaders of weight 2, and each such vector induces unique
homogeneous modified Jacobi polynomial :

HM-Jac(C, vo; z,y,u,v,w) =
2'%2 4 15(v + w)?z%* + 722° u(v + w) + 60z*y®e?
60z%y" (v + w)? + 90z%yPu(v + w) + 6y"°(v + w)? + 20z°u®

(iii) There 1760 coset leaders of weight 3, and in each coset there are 4 coset
leaders of weight 3. But they all produce the unique homogeneous modified
Jacobi polynomial :
HM-Jac(C, v3; z,y,u,v,w) =
z%u® 4 325 (v + w)® + 27z u(v + w)? + 54z%yPul(v + w)
+21239% (v + w)® + 54z u(v + w)? + 27zt (v + w)
+3y°(v + w)? + 24230 + 2040

By the process described before (sec 4.1) we get all the coset weight distri-
butions for this code.

Table of coset weight distributions of ternary Golay code of Length 12
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coset |0 1 2 3 4 5 6 7 8 9 10 11 12| num. of
weight diff.
cosets

01 264 440 24
1 1 66 66 132 165 165 110 12 12 24
2 1 15 30 87 132 180 150 96 32 6 264
3 4 9 36 78 144 171 156 90 36 5 440

1+ 24 + 264 + 440 = 729 = 3% =| F}2/G), |

4.3 Ternary Extremal Codes of length 16

There is unique ternary self-dual extremal code of length 16 ([3]). The weight
enumerator of ternary self-dual extremal [16,8,6] code is given by

z'% 4 2242100 + 27202"y° + 3360z4y'2 + 256zy'®

As before we can determine the homogeneous modified Jacobi polynomials of
various indeces, and as a consequence we obtain complete list of coset weight
distributions of such code. For the limitation of the space we only give the
table of coset weight distributions of this code.

coset |0 1 2 3 4 5 6 7 8 num. of
weght diff.
cosets

01 224 1

1 1 42 42 140 765 32

2 1 7 14 63 260 492 480

3 1 4 21 80 221 504 1792

3 2 3 18 82 222 513 896

3 4 1 12 8 224 531 224

4 5 24 78 220 495 3136
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coset 9 10 11 12 13 14 15 16 num. of
weight diff.
cosets

02720 3360 256 1

1| 765 1190 1260 1260 840 120 120 16 32

2| 918 1176 1400 1134 728 280 72 16 480

3| 888 1257 957 359 293 705 859 412 1792

3| 876 1260 954 361 294 702 866 308 896

3| 852 1266 948 365 296 696G 880 400 224

4 900 1254 1368 1125 700 300 84 8 3136
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THE MOD 2 COHOMOLOGY ALGEBRAS
OF FINITE GROUPS
WITH WREATHED SYLOW 2-SUBGROUPS

HIROKI SASAKI

1. INTRODUCTION

The simple groups of 2-rank 2 were classified about 1970 by Alperin, Brauer,
Gorenstein, Walter, Lyons. See for example Alperin-Brauer-Gorenstein [5]. The
2-groups of rank 2 which can be Sylow 2-subgroups of finite simple groups are

(1) dihedral 2-groups (including four-groups);

(2) semidihedral 2-groups;

(3) wreathed 2-groups;

(4) special 2-group which is a Sylow 2-subgroup of SU(3, 4).
We note that in those works all finite groups with these Sylow 2-subgroups above
were determined.

The cohomology algebras of finite simple groups of 2-rank 2 have been known,
depending on the classification theorems and on the fact that the cohomology alge-
bras of some classical groups were calculated. A nice overview of these results is in
the work by Adem-Milgram [3].

TABLE 1. Finite simple groups of 2-rank 2 and cohomology algebras

Sylow 2-subgroup | Simple Groups Colhiomology Algebras

(non-abelian)

dihedral PSL(2,q), g odd k[e2,¢3,64)/(¢6)
Az

semidihedral PSL(3,q), ¢ =3 (mod 4) | k[Bs,74,85)/ (8% — 6%)
PSU(3,9), g=1 (mod 4)
My

wreathed PSL(3,9), g=1 (mod 4) | k[63, p4, 05, 06]/(62,62)
PSU(3,q), g=3 (mod 4)

special of order 64 | SU(3,4)

Remark. In Table 1 and in the rest of this report the subscript of a cohomology class
indicates the degree. For example p4 is of degree 4, o¢ is of degree 6, and so on.
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From the late 1980’s the mod 2 cohomology algebras of those finite groups with
dihedral, semidihedral , and quaternion Sylow 2-subgroups have been calculated:
(1) dihedral and quaternion case by Martino-Priddy [20], 1991; by Asai-Sasaki [7],
1993;
(2) semidihedral case by Martino [19], 1988; by Sasaki [23], 1994.

The works by Martino and Priddy dealt with the classifying spaces, and, as a
consequence, obtained the cohomology algebras. On the other hand, the works by
Asai and Sasaki depend on the theory of cohomology varieties of modules and on
the modular representation theory of finite groups. Especially the theory of relative
projectivity of modules played a crucial role.

The purpose of this report is to show a calculation of the mod 2 cohomology
algebras of finite groups with wreathed Sylow 2-subgroups. Our method is again
module theoretic. This work was done with T. Okuyama.

Let S be a wreathed 2-group

S=(a,bt]|a® =b"=2=1, ab=1ba, tat=>b), n>2.

Let G be a finite group which has § as a Sylow 2-subgroup. Structure of these
groups was deeply investigated in Brauer-Wong [11], Brauer [10], and Alperin-
Brauer-Gorenstein [4]. As a continuation of [4] the classification of these finite
groups was completed in the paper [5].

The fusion of 2-elements can be described by behavior of several involutions and
subgroups. Among them we use four-groups and their normalizers. The reason
is that Theorem 2.1 by Carlson shows that we can choose a system of parameters
whose elements are sums of corestrictions from the centralizers of elementary abelian
subgroups; and Corollary 2.2 due to Okuyama shows that a tensor product of some
Carlson modules of parameters taken as in Theorem 2.1 is projective relative to the
centralizers of elementary abelian subgroups. These results are of great help to our
calculation. Let

azn-l’ y = bzn-l

= » Z2=1TY

and let
E={z,y), F={(zt)

Then { E,F} is a complete set of representatives of the conjugacy classes of four-
groups in S. The fusion of 2-clements in G is indicated in Table 2.

TABLE 2. Fusion of 2-elements

a: Ng(E)/Cg(E) = Z3 | b: Ng(E)/Ce(E) = S3
(x = 2) (z~2)
. ExF| §NG' =5 = (ab™!) SNG' = (a,b)
(x=t)
2 E~F| SNG =(ab},xt) SNG' =8
(z~1)
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Following Alperin-Brauer-Gorenstein [4], we call a group of type 1b a “D-group™;
a group of type 2a a “Q-group™; a group of type 2b a “QD-group”. However,
our calculation does not depend on the structural results such as, for example, a
Q-group G has O%(G) of index 2" with generalized quaternion Sylow 2-subgroup
SNG' = (ab™!,zt).

The cohomology algebra of the wreathed 2-group is calculated by Nakaoka's the-
orem. In the main theorem below the cohomology algebras of other types of groups
are stated as subalgebras of that of the wreathed Sylow 2-subgroup S.

Main Theorem. Let k be a field of characteristic 2.
(1) If G is of type la, then

H*(G,k) = H*(S, k)
= k1,70, Gy G, vl (G 43, €G3, 71 7620 G326, 23, a6 — o)
(2) If G is a D-group, then
H*(G,k) = k[, 12,03, 4,05, ),
where
83 =T+ Gl +(3, pa =1 +C3 + v, 05 = 20 + (100 + (23, 06 = (71 + G2)us.
(3) If G is a Q-group, then
H*(G, k) = k[¢1,02,03,p4),
where
02 =11 + (2.
(4) If G is a QD-group, then
H*(G, k) = kb3, ps, 05, 05).

Our plan to calculate the cohomology algebras is as follows:

(I) To get a homogeneous system of parameters { p,o } for H*(S, k) which is uni-
versally stable.

(II) To obtain dimension formulae dim H™(G, k) =?.
(III) To investigate generators of H*(G, k) over k[p, o).

Finally we note that the work of Adem [1] gives us good knowledge on recent de-
velopment of the cohomology theory of finite groups, especially cohomology algebras
some sporadic finite simple groups.

2. SYSTEM OF PARAMETERS

Let G be a finite group of p-rank r and let P be a Sylow p-subgroup of G, where
p is a prime number. Fori=1,...,r, let

Hi(G) = {CG(E) | P 2 E is elementary abelian of rank i }.

Let k be a field of characteristic p. The following theorem by Carlson and its
corollary due to Okuyama made our argument clear and simple.
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and let

pr=T G +u
06 = (12 + ()vs.
Then we have
Theorem 2.8. (1) The set {p4, 06} is 2 homogeneous system of parameters of
H*(S,k).
(2) o¢ € cord; HS(U, k) + cor§, HS(V, k);
(3) The Carlson module L,, is {U, V }-projective. In fact
Ly = Lazwﬂ:s @ sz+w¢zs:
wherew = Y1 € k.
(4) The element p4 is regular in H*(S, k).

Using the structure of the Carlson module L, above, we can determine an L,-
injective hull of the trivial module k. For the notion of projectivity of modules
relative to “modules”, which is a generalization of that of projectivity relative to
subgroups, see Okuyama [21], Carlson [12], or Sasaki [22].

Theorem 2.4. The extension induced by the element p; € H4(S, k)
0—=k— 'L, 2 Bk—0

is an Lp-injective hull of the trivial module k. Namely tensor product of L, with
the exact sequence above splits.

The exact sequence above can be lifted up to G:
Theorem 2.5. There exists a kG-module X such that

1
Xis = L, ® (projective) ;
(2) an X-injective hull of k¢ is of the form
0— ke — Q7' X — Q3% — 0.
Let
ps € HY(G,k) .
be the cohomology element defined by the extension above. Then we obtain an
Lz-injective hull of the trivial module k¢
0— kg — Q 'Lz — Q% — 0
and we sce that
ress pg = py.
Namely p4 is universally stable.

The Ljz-injective hull above gives us much information about the cohomology
algebra. First we can deduce the following theorem.
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Theorem 2.1 (Carlson [11]). The cohomology algebra H*(G,k) has a homoge-
neous system of parameters {(y,...,(, } such that
GeE Y cofH'(HK), i=1,...,r
HeNi(G) B

Corollary 2.2 (Okuyama). If a homogeneous system of parameters {(1,...,(r }
is taken as in the theorem above, then the tensor product L¢, ®...® L¢,_, is H.(G)-
projective, where Ly, is the Carlson module of the element ¢;, i =1,...,r.

In particular, if r = 2, then L, is Ha2(G)-projective and the element (, is regular
in H*(G,k).

We apply these results to the wreathed 2-group
S=(a,bt|a® =" =1*=1, ab=1ba, tat=b), n>2

and the finite group G, which has S as a Sylow 2-subgroup.
Let ‘
c=ab z=0"", y=bt"", z= &'
and let
E= (zay)s F= (zst)'

Then { E,F} is a complete set of representatives of the conjugacy classes of four-
groups in S. Their centralizers are

Cs(E) =(a) x (b), Cs(F)={c)x(¢).
We set
(a)x(b)y=U, (c)x(t)y=V.
Then we have
Ha(S)={U, V}.

By Theorem 2.1 and Corollary 2.2, the cohomology algebra H*(S, k) has a homoge-
neous system of parameters { £},€, } such that

(1) & € corfy H*(U, k) + cor§, H*(V, k);
(2) L¢, is {U, V }-projective;
(3) & is regular in H*(S, k).
To obtain such parameters we let
az € infY HX(U/(b),k), fo € it H*(U/{a),k)
x2 € inf¥ H2(V/(t),k), ¢¥2 € inf¥ H2(V/(c),k).
Let
1 € infS HY(S/U, k)
(= corls, az € H?(S, k)
v4 = normy; o € HY(S, k)
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Theorem 2.8. The element oy is universally stable. Namely there exists an element
G¢ € HS(G, k) such that
resg 33 = 0Og.
Thus the set
{P-h a6 }
is a homogeneous system of parameters for H*(G, k) for every G.

Second we can deduce dimension formulae for the cohomology groups H*(G, k).
The cohomology long exact sequence induced from the extension

0— kg — Q7 'L; — Q% — 0
gives rise to short exact sequences
0 — Homyg(Q3k, k) — Homyg(Q~'L;,, k) — 0,
0 — Extig(k, k) — ExtPE! (9%, k) — Extid(Q~'L;,k) — 0, n20.
In particular we have a formula
dim Ext?24(k, k) = dim Ext]g(k, k) + dim Ext}s(L5,, k)
and we can compute dim Extfg(Lj,, k). For example, if G is a QD-group, then
0 ifn=0 (mod3)
dim Extfe(Lz,k) =<1 ifn=1 (mod 3)
1 ifn=2 (mod3)

We can also calculate dim Extfg(k, k), n = 1,2,3. so that we obtain dimension
formulae for H*(G, k).

3. GENERATORS OF COHOMOLOGY ALGEBRAS

We have obtained a system of parameters {5;,55 } and established dimension
formulae for the cohomology groups H*(G,k). We have to get generators of the
cohomology algebras over the subalgebra k[p,, &5).

First let us state generators of the cohomology algebra of the wreathed 2-group S.
The cohomology algebra H*(S, k) has { o2(= 7{ +(2), P4 } as a system of parameters.
Hence we can take generators of degree up to 4. In fact, H*(S,k) is generated over
the subalgebra k[o2,p4) by 71, which was defined in Section 2, and the elements
C1,40,(3 € H*(S,k). To state these elements, let @, € inf H'(U/(b), k). Let us
define

(1 = corjy oy € H'(5,k)
vy = normﬁ aj € H’(S,k)
(3 = corf{mas) € H3(S, k).

It is easily seen that the cohomology algebras of the groups G in which F and F
are not conjugate are isomorphic with those of the normalizer Ng(E), by comparing
the dimensions of the cohomology groups. On the other hand, when E and F are
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conjugate, one can take an element gg € Cg(c) such that E% = Fand U%NS=V.
Then we can determine the stable elements considering the subspaces

{¢ € H'(S\k) | £y =év}, n<Ad

Remark. Of course the element go above plays an important role throughout in our
investigation for those groups in which E and F are conjugate.
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The Classification of Four-weight
Spin Models with Size Five

Mitsuhiro Sawano
Kyusyu University

This is a joint work with Etsuko Bannai.

The concept of the apin model was introduced by V.F.R.Jones to construct invariants
of knots and links. It was generalized by Kawagoe, Munemasa and Watatani, Finally,
Bannai and Bannai introduced the much more general four-weight spin models [1].

First we give the definition of four-weight spin model.

Let X be a finite set with |X| = n and M¢( X ) be the set of all the matrices over
complex number field C with rows and columns indexed by X.

Definition (Bannai and Bannai)
W,, W, W, W,, D) is a four-weight spin model on a finite non-empty set X, where
D*=(X], W, W;, W, W, are complex matrices in Mc(X) satisfying the following

conditions.

Foralla,b,cinX
i)Wia,b)Wsb,a)=1 Wya, b)W,b,a)=1
i) ZiaxWila, x)/W,(b, x) = 1X| 8,4, Z,ex Wila, x)We(b,x)= |X]| 6.,
i) Z.ex Wsa, x)Wy(b, x)/Ws(e, x) = DW,(b, a)/W (c, a)W,(b, c)
Z ,ex Walx, a)W(x, b)/Wy(x, c) = DW,(a, b)y/W,(a, c)W,(c, b).

The equation i) shows that four-weight spin models are determined by two
matrices W, and W, If you have a two-weight spin model (W,, W, D), then it is easy
to see that (W,, W,, W, W, D) is a four-weight spin model.

Recently Guo constructed examples of four-weight spin model using symmetric
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design [2]. Guo's examples are the first ones, which are not constructed from two-
weight spin models using the method mentioned above. Next definition corresponds
to the condition ii) of the definition above.

Definition
A matrix W in Mc(X) is a Typell matrix
if Z,exW(a, x)W(, x) = &, holds foranya,b € X.

IfWis a Typell matrix then it is easy to sece that W =P AWA ‘P’ is also a Type I
matrix for any permutation matrices P, P° and for any invertible diagonal matrices A,
A’ . For Typell matrices W and W’, we say W’ is equivalent to W if and only if there
exist permutation matrices P, P° and invertible diagonal matrices A, A’ such that
W’ is equal to PAWA ‘P’, Then this defines an equivalence relation.

We note that if (W,, W;, W, W,, D) and (W,", Wy', Wy', W', D) are gauge equivalent
this W, and W;" are equivalent as Type I matrices.

To investigate four-weight spin models we need more examples. We study the four-
weight spin models in two directions. One direction is to classify them for small sizes
of X. Another is to seek for four-weight spin models in the equivalence classes (as
Typell matrices) of known two-weight spin models.

Examples 1
* We can easily check that the following matrices are Type I matrices.
(i)W € Mq(X) defined by
Wx.y)= a (x=y)
= 1 (x#y) ,where a+a'+n-2=0

(ii) W € M(X) defined by
Wix,y)= n*¥  foranyx,y € X
.where n is a primitive n-th root of unity.
In this example we take X={0,1, .......... , n}.

Note : The two matrices defined in ( i ) according to the two solutions of a+a ‘! +n-2
=0 are not equivalent as Type I matrices except for n<5. The matrices defined in (ii)
according to primitive n-th root of unity are equivalent to each other as Typell

matrices. For n is equal to or less than four, there are some matrices that are potts
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type and cyclic type at the time.

In this paper we say ME M(X) is potts type if M is equivalent (as Typell matrix)
to one of the matrices given in Example 1 (i ), and cyclic type if M is equivalent (as
Typell matrix) to one of the matrices given in Example 1 (ii ).

Example 2
Four-weight spin models of size |X| =n.
i) Cyclic model
Wi(x,y)= n&n? Wylx, y) = ntn?

;where n?2is the primitive n-th root of unity.

ii) Potts model
Wi, y)= &« (x=y) Wilx, y) = W,
=1(x# y)
;where a+a?+(n-2)=0,
We will call a four-weight spin model of i ) cyclic model. The (x, y)-entry of W, is 7
G2 and W, is equal to W,. 7?2 is a primitive n-th root of unity. We will call a four-
weight spin model of ii ) potts model.

Typell matrices of size five was classified by Nomura[3].

Theorem 1 (Nomura)

Every type I matrix of size five is equivalent to either potts type or cyclic type in
Example 1.

,where n is a primitive 5.th root of unity and « +a'+38=0,

For i ) the equivalence class does not depend on the choice of primitive 5-th roots of
unity. In case ii ) there are two matrices corresponding to the two solutions of a+a”
+3= 0 and these two matrices are not equivalent to each other. If size is more than or
equal to 6 then there may exist infinitely many families of Type I matrices.

Fjaeger developed the concept of gauge transformations among four-weight spin

mcdels [4]. He defined odd and even gauge transformations of spin models supported
by the following two theorems respectively.

137



Theorem 2 (Jaeger)

Let (W,, W;, W3, W,, D) be a four-weight spin model. Then (W,", Wy, W', W,, D) is a
four-weight spin model if and only if there exists a invertible diagonal matrix in
Mc(X) satisfying W,"= AW, A", Wy’ = AW,A . Moreover if (W,", Wy, W', W,, D) is
a four-weight spin model then the associated link invariant is the same as the one
associated to (W,, Wy, Wg, W,, D).

Theorem 3 (Jaeger)

Let (W,, Wy, Wy, W,, D) be a four-weight spin model. Then (W,, W;’, W3, W,°, D) is a
four-weight spin model if and only if there exists a permutation matrix P in M¢(X)
satisfying the following conditions.

(i) Wy'PW, is also a permutation matrix.

(i) Wy =PW,, W,/ =W,/P,

Moreover if (W,, W', Ws, W,°, D) is a four-weight spin model then the associated
link invariants are the same as the one associated to (W,, W,, W3, W,, D).

We can obtain the following Theorem 4 easily from Theorem 2 and Theorem 3.

Theorem 4 (Jaeger)

Let (W,, W,, W;, W,, D) be a four-weight spin model. Let P be a permutation matrix
in Mc(X) such that W 'PW, is also a permutation matrix, A be an invertible
diagonal matrix in M¢(X), and 1 be a non-zero complex number.

Then (A AW, AL, 1 PW,, 11AW;A, A W,/'P, D) is a four-weight spin model, and
gives the same link invariant as the one associated to(W,, W,, W, W,, D).

These spin models, which are obtained from a given spin model by gauge trans-
formations, have the same link invariant. In this paper, we say (W,", W;', Wy, W, D)
is gauge equivalent to (W,, Wy, W,, W,, D) when (W,", W,", Wy", W, D)is expressed as
(A AW, AL A1 PW, 11AW,A, 1 W.P,D).

It is natural to consider the following question. Take two four-weight spin models
W, Wy, W, W, D)and (W,", W', Wy’', W', D). Assume W, and W,” are equivalent as
Typell matrices. Then are they gauge equivalent?

We studied this problem for the spin models whose matrices are equivalent (as Type
I matrix) to the matrices of potts type and cyclic type given in Example 1.

For the potts type we obtained the following theorem.
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Theorem b

Let (W,, We, Wy, W,, D) be a four-weight spin model. If there exists 15i54 such that
W, is equivalent (as Typel matrix) to one of the matrices given in Example 1 (i)
then (W,, W;, W,, W,, D) is gauge equivalent to a potts model.

When n is at most four, this theorem does not hold. There are counter examples,
Four-weight spin models of size at most four are classified by Guo — Huang[6].

Every four-weight gpin model of size at moat four is gauge equivalent to one of the
followings.

i)n=2,

W, : Wa 5l

[
i)n=3.

SRR w D ok d|\ |

=& = =1 ®!

,wl\eve L+t 4120
e =4. - -
o L p (115 T

: - { | - b z - Vgt
Wl ‘f ' W, 2. \bE
bbbyt b Y

,wlxer-e b is non-zero comrley numLer_

Note : In case iii) two of these spin models are not gauge equivalent to each other,
when they do not have the same |b].

If n is equal to five then by Theorem 1 and Theorem 5 W, and W, are equivalent to

potts matrix at the same time or cyclic matrix at the same time, So we obtain the
following theorem.
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Theorem6
Every four-weight spin model of size five is gauge equivalent to one of the following
four weight spin models.

i) Cyclic model (W, =W, D*'W, +D*W", D)
W is the matrix of i) in Theorem 1.

i) Potts model (W, DW/(-1), D’W", D(a-1)W-, D)

W is the matrix of ii) in Theorem 1

For Theorem B, we can do similar argument for cyclic models and I believe that we
can obtain a similar result. Now we are working on it.

References

[1] E.Bannai and E.Bannai, Generalized generalized spin models (four-weight spin
models), Pacific Journal of Mathematics Vol. 170 (1995) 1-16.

{2] H.Guo, On Four-Weight Spin Models, PhD Thesis, Kyushu University.

[3] K.Nomura, Typell matrices of size five, to appear in Graphs and Combinatorics,

[4] F.Jaeger, On four-weight spin models and their gauge transformation, preprint.

[6] H.Guo and T.-Huang, Some Classes of Four-weight Spin Models, preprint.

140



REPRESENTATIONS OF FINITE CHEVALLEY GROUPS

TOSHIAKI SHOJI

Department of Mathematics
Science University of Tokyo
Noda, Chiba 278 Japan

1. INTRODUCTION

This note is an exposition of the representation theory of finite Chevalley groups,
developed mainly by G. Lusztig since 1970’s. The main problem which we are con-
cerned here is the classification of irreducible ordinary representations of such groups,
and the determination of their character values, namely, to give a complete algorithm
of computing character tables. In 1976, Deligne and Lusztig ([DL]) constructed, in
a general framework of finite reductive groups, a family of representations endowed
with some nice properties by using l-adic cohomology theory. By extending their
results, based on the powerful tool of {-adic cohomology theory combined with the
theory of perverse sheaves on reductive algebraic groups G, Lusztig succeeded in
1980's in classifying all the irreducible representations of finite reductive groups
G(F,) and in determining their degrees ([L1]).

So the remaining problem is the determination of character values. In order to
approach to this problem in a general point of view, Lusztig founded the theory of
character sheaves ([L2]), which makes it possible to produce certain type of class
functions of G(F,) (but not necessarily characters) in a systematic way. He showed
that such class functions are actually computable, and form a basis of the space
of class functions of G(F,). Under these circumstances he proposed a conjecture
connecting such class functions with irreducible characters of G(F,). Lusztig's con-
jecture offers a way to a general algorithm of computing irreducible characters. In
the case where the center of G is connected, Lusztig's conjecture was solved by the
author, by using the theory of Shintani descent developed by Shintani, Kawanaka
and Asai, (see e.g., [K]).

In this note, we first review Lusztig's classification of irreducible characters, and
then its relations with the theory of Shintani descent. After formulating Lusztig’s
conjecture, we summarize related results on the computation of irreducible charac-
ters in the case where the center is connected. In the case of disconnected center,
Lusztig’s conjecture is not yet established. We discuss this case, in connection with
recent results on Shintani descent, the Mackey formula and generalized Gelfand-
Graev representations.
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2. THE CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS

Let G be a connected reductive algebraic group defined over F,, a finite field of
g elements with chFy = p. We denote by F : G — G the corresponding Frobenius
map on G. Then the group G(F,) of Fg-rational points in G coincides with the
subgroup G¥ of fixed points by F in G. Let Q, be the algebraic closure of the l-adic
number field Q;, for | # p. Then Q; =~ C, and in what follows we consider the
representations of GF over Q; so that l-adic cohomology theory can be applied. We
are interested in the following problem.

Problem. Classify all the irreducible representations of a finite reductive group
GF, and determine the values of irreducible characters, i.e., complete the character
table of GF

The fundamental tool for the classification is the virtual GF-module R$(0) in-
troduced by Deligne and Lusztig in 1976. Let T be an F-stable maximal torus of G
and take § € TF = Hom(TF,Q}), a linear character of TF. For such a pair (T, #8),
a virtual GF-module R$(0) is constructed as an alternating sum of certain l-adic
cohomology groups on which G acts naturally.

Let Gy be the unipotent variety of G, and G ; the set of unipotent elements
in GF. We define a GF-invariant function Q¢ : G5, — Q, by

Qf(w) = Tr (v, RE(), (v €Gl).

The function Q$ does not depend on the choice of 8, and is called the Green func-
tion of GF. As the following formula shows, the computation of character values
of R$(6) is reduced to the determination of Green functions of various reductive
subgroups of G.

(Character formula.) Let ¢ = su = us € GF with s : semisimple and u :
unipotent. Then we have

Tr (g, REO) = 122(s)F1" Y. Q%Y (w)o(z" s2).

zeGF
z-VszeTF

Another important property of R%(0) is the following orthogonality relations.
(Orthogonality relations.)

(RZ(0), RE(0))gr = Mw € W(T, T")" | 8 = ¢},

where {, )or means the usual inner product, and W(T,T") = N(T,T")/T" with
NT,Ty={neG|n 'Tn=T"}.

It follows from the above formula that +R%(8) turns out to be irreducible if 0
is enough generic. In this way, almost all irreducible characters of GF are obtained
from some pairs (7,8). In what follows, we denote by GF the set of irreducible
characters of GF. The first task for the classification is the partition of GF into
certain subsets as follows. Let G* be the dual group of G, i.e., G* is a connected
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reductive group over F,, with Frobenius map F, and its root system is dual to the
original one. For each F-stable maximal torus T in G, there corresponds an F-stable
maximal torus T in G* which is dual to 7', (unique up to G*F-conjugate). Then the
set of pairs (T',8) (up to GF-conjugate) is in bijection with the set of pairs (T, s)
for s € T*F (up to G*F-conjugate ). For each F-stable semisimple class {s} in G*,
we define a subset of GF by

EG"{sh) = | {0 G (o, RE(0))sr #0},

(1 .6:)

where (7},0,) runs over all the pairs such that (7,8,) corresponds to (T}, s)) with
1 € TyF N (s} under the above correspondence. In the case where the center of G
is connected, the set {s}” consists of a single G*F-class, and we may choose s, = s.
Moreover in this case, the centralizer Zg-(s) of s is connected.

Lusztig has proved the following result.

Theorem 2.1 (Lusztig [L1]). Assume that the center of G is connected. Then

(i) GF is partitioned as

aF = H g(GF‘, {S}),
{s)

where {s} runs over all semisimple classes in G*F.
(i) There erists a natural bijection

E(GT, {s}) = E(Ze-(s)", (1])-

An irreducible character p on GF is called a unipotent character if p belongs to
the set £(GF, {1}). This is equivalent to saying that {p, RE(1));r # O for some T.
In view of (ii) in the theorem, the classification of irreducible characters of G is
reduced to that of unipotent characters.

2.2. The classification of unipotent characters.

In order to explain the parametrization of unipotent characters due to Lusztig,
we prepare some notation. Let T be an F-stable maximal torus contained in an
F-stable Borel subgroup B of G. Then a pair (B, Ty) is unique up to GF-conjugate.
Let W = Ng(To)/To be the Weyl group of G. Then F acts naturally on W. We
assume, for simplicity, that F acts trivially on W, i.e., GF is of split type (or GF is
a finite Chevalley group). Then GF-conjugacy classes of F-stable maximal tori in
G are in one to one correspondence with the conjugacy classes in W. We denote by
T., an F-stable maximal torus corresponding tow e W. f T =T, withw =1, T
coincides with Tp, and in this case we have RE(1) = Indgz 1. It is known that

Endgr(1ndGr 1) = Hy(W) =~ Qu[W],
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where Hy(W) is the Iwahori-Hecke algebra of W with parameter g. Hence Inda,,: |
is decomposed, as Hy(W) x GF-module,

Indr 1 =~ @ Ve ® pE,
Eewn

where Vg is an irreducible representation of Hy(W) and pg is the corresponding ir-
reducible representation (or irreducible character) of GF. In particular, we obtain (a
part of ) unipotent characters {pg | E € W*} parametrized by the set of irreducible
characters of W. We now define, for E € W4,

Re = W™ Y E@)RE (1) € C(GF/~),

wew

where C(G¥/~) denotes the Q;-space of class functions of G*. The following formula
is an immediate consequence of orthogonality relations of R$(8).

1 ifE=FE
(Re, Redar = {o i[E#E'.

According to Lusztig, the set £(GF, {1}) of unipotent characters is parametrized
by a set X (W), which is completely described in terms of the data coming from two
sided cells of Ho(W). In particular, the parametrization depends only on the Coxeter
diagram of W, and independent of p. He also showed the existence of a certain
non-degenerate pairing { , } : X(W) x X(W) — Q;. We express the unipotent
character corresponding to £ € X(W) by p.. By the previous remark, there exists
an injection W — X(W) via E — zg with p;; = pg. The following formula gives
the decomposition of Rg into irreducible characters of GF.

(2.2.1) Rg= Z {v.ze}py.
vex(w)

Note that in certain E € W* for type E; or E; (exceptional characters of W),
some modification is needed for the above formula. We also note that except the
above case, unipotent characters are characterized by the multiplicities for various
Rg. This is the leading principle of the parametrization by Lusztig.

Now the decomposition of Rg in (2.2.1) suggests to define formally a class func-
tion R; on G* for any z € X(W) by

R, = Z {v.z}p,.

vexX(w)

Then the orthogonality property holds also for such R., and we see that {R; | z €
X (W)} gives rise to an orthonormal basis of the subspace of C(G¥/~) generated by
unipotent characters.
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Remarks. (i) More generally, the set £(GF, {s}) is also described in a similar way
(cf. (ii) of Theorem 2.1), and we get the total parameter set X(G*) for GF. Then
one can define functions R. for z € X(GF) similar to the previous case. The set
{R.: | z € X(GF)} gives rise to an orthonormal basis of C(GF/~), and R.'s are
called almost characters of GF. ~

(ii) In the case where the center of G is disconnected, the classification of GF is
done by reducing it to the case of connected center. However, the construction of
almost characters in this case is not so clear.

3. SHINTANI DESCENT FOR REDUCTIVE GROUPS

Although we keep the assumption in section 2, we note that the theory of Shin-
tani descent itself makes sense for (not necessarily reductive) all connected algebraic
groups. We consider a finite group GF™ = G(Fm) for a positive integer m. Then
F leaves GF™ invariant, and one can define the set GF™/~f of F-twisted conjugacy
classes in GF™. (Here z,y € GF™ are said to be F-twisted conjugate if there exists
z € GF” such that y = z7'2F(z)). There exists a natural bijection Npmr, called a
norm map,

Npm/p B GFM/NF — GF/N’

induced from the assignment z € GF™ — z' € GF where x is written as z = a™! F(a)
for some a € G (by Lang’s theorem) and £’ is given by 2’ = F™(a)a™! . We define
a Shintani descent map Shem/r by its transposed inverse,

Shemip = Ninlp : C(GF"[~F) = C(GF/~),

where C(GF"/~F) denotes the space of functions on GF™ which are constant on each
F-twisted classes. Now for each F-stable irreducible character p of GF™, one can
associate an element [p] € C(GF™/~), unique up to an m-th root of unity multiple.
We denote by (GF™)F the set of F-stable irreducible characters of GF™. Then the
set {[p) | p € (GF™)F} form an orthonormal basis of C(GF™/~) under a suitable
inner_product on it. Hence the above discussion implies that the cardinality of the
set (GF™)F is equal to the cardinality of the set GF.

The fundamental problem in the theory of Shintani descent is the description
of Shemp([p]) for each p € (GF™)F, and was studied extensively by Shintani and
Kawanaka from the view point of the character correspondence. The connection of
the theory of Shintani descent and Deligne-Lusztig theory was first noticed by Asai.
It is summarized in the following theorem, (see e.g., [S1}) .

Theorem 3.1 (S). Assume that the center of G is connected. Assume further that
m is sufficiently divisible. Then for each p € (5" ™)F, Shemip([p]) coincides with
an almost character of GF up to scalar. Hence the map Shpm /F gives a natural
bijection

(GF™)F x4{R: | = € X(GF)).
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Remark. We shall illustrate by a simple example why the Shintani descent gives
a connection between these two objects. We consider the following two kinds of
decompositions.

ndgim 1= P Ve® o
EeWwh

R (1)= > E(w)Re,

EecwA

where Vg is an irreducible Hgm (W)-module as before, and pE is the corresponding

GF"-module. Let V be the representation space of Ind,,pm 1. Then we have an
action of F on V besides the action of Hy(W) and G¥™. On the other hand,
R (1) is defined as an alternating sum of cohomology, and we have an action of
F™ for each cohomology group. Then it is known (Shintani descent identity) that
the trace of F - T, -z on V coincides with the trace of F™z' on RZ (1), where T,
is a standard basis of H.,m(W) corresponding to w € W, and z € GF™ ,z' € GF are

related by Npm/p(x) = z’. Hence by specializing ¢™ — 1, Shpm;r gives a connection

between p(E"') and Rg.

We define a linear map
RE : C(T*/~) — C(GT/~)

by assigning RE(8) to 8 € TF, and extending it linearly. Generalizing the construc-
tion of R¢(6), Lusztig defined, for an F-stable Levi subgroup of a not necessarily
F-stable parabolic subgroup P of G, a linear map

Ricp : C(LF/~) = C(GT/~),

which is called the Lusztig induction (or twisted induction) from L¥ to GF. It is
expected that Lusztig induction depends only on L and not on P, but it is not yet
known in the full generality. The Shintani descent identity formula can be extended
to this more general situation. Then using a similar argument as in the remark, one
can describe the decomposition of Rf_p(w) for 7 € LF. More precisely, we have

Corollary 3.2. Assume that the center of G is connected. Then the decomposition
of the Lusztig induction into almost characters is complelely described by means of

the Harish-Chandra induction Indf,f-: on GF™ via the Shintani descent.

4. CHARACTER SHEAVES AND LUSZTIG'S CONJECTURE

First we briefly recall the theory of character sheaves developed by Lusztig. Let
DG be the (bounded) derived category of Q;-sheaves on G, and MG the full subcat-
egory of DG consisting of perverse sheaves. MG is an abelian category admitting
composition series of finite length. A notion of G-equivariance is introduced in MG.
We denote by MgG the subcategory of MG consisting of G-equivariant perverse
sheaves with respect to the adjoint action of G on G.
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A complex K € DG is called F-stable if F*K ~ K, where F*K is the pull
back of K under the Frobenius map F. For an F-stable K, we fix an isomorphism
@: F*K~ K. It induces a linear isomorphism ¢, : HLK ~HLK for z € GF. (Here
for each z € G, HLK denotes the stalk at z of i-th cohomology sheaf H'K of K).
We define, for a given (K, p) as above, a function xx, : GF — Q by

xio(z) = D_(-1) Tr (pe HoK)  (z € GF),

which is called the characteristic function of K with respect to ¢. Note that
perverse sheaves are purely geometric objects associated to G (but not to GF).
However, if K is a G-equivariant perverse sheaf, then xx,, turns out to be a class
function of GF. Hence MG provides a machinery of producing class functions of
GF, and this gives a bridge connecting perverse sheaves on G with the character
theory of GF. It is of course essential to consider simple perverse sheaves. The.set
of character sheaves defined by Lusztig is a certain set (C MgG) of G-equivariant
simple perverse sheaves on G. We denote by G the set of character sheaves on G.
The scheme of the theory of character sheaves is quite analogous to that of Harish-
Chandra theory for finite reductive groups in the following sense; there exists a
notion of cuspidal character sheaves, and for each Levi subgroup L of a parabolic
subgroup P of G, there exists an induction functor indg : ML — DG satisfying
the following property.

o For each cuspidal character sheaf Ay € f,. indc,, A is a semisimple object in
MG, and each direct summand belongs to G.

e Any A € G is obtained as a direct summand of indg Ag for some Ag € f,,
cuspidal.

Before stating Lusztig's results on character sheaves, we prepare some notation.
A prime p = chF is called almost good for G if p satisfies the following conditions;

p#23 if G has factors of type E;, Fy, G3,
p#3 if G has a factor of type Eg,
p#235 if G has a factor of type Ej,

and no conditions for factors of classical type. We denote by (@)P the set of F-
stable character sheaves on G. (Do not confuse this with GF). For each 4 € (G)F,
we choose ¢4 : F*A>A. Note that since A is simple, w4 is unique up to scalar
multiple.

Theorem 4.1 (Lusztig [L2]). Assume that p is almost good for G. Then

(i) Under a certain normalization, {Xa. | A € (G)F)} gives rise to an orthonor-
mal basis of C(GF/~).
(i) There erists a general algorithm of computing characteristic functions Xa .,

Based on his results, Lusztig proposed the following conjecture.
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Conjecture 4.2 (Lusztig). There exists a natural parametrization X(GF) ~ (@)F ,
(which we denote by z < A,, and write as @4, = ¢, : F*A;23A;), such that

XAupe =Rz (e €Q)).

Lusztig's conjecture asserts that characteristic functions x4, coincide with al-
most characters up to scalar. Since we know the decomposition of almost characters
into irreducible characters (especially in the case of connected center), Lusztig’s con-
jecture provides us an algorithm of computing irreducible characters whenever we
know the scalar constants ¢;.

The following result by the author gives a partial answer to Lusztig’s conjecture.
Its proof is done by appealing to the theory of Shintani descent based on the Shintani
descent identity for character sheaves, which is an analogy of the formula discussed
in section 3.

Theorem 4.3 ([S2]). Assume that the center of G is connected, and assume that p
is almost good. Then Lusztig’s conjecture holds for GF.

On the other hand, under some restrictions on p and ¢, Lusztig has proved the
following result for arbitrary G.

Theorem 4.4 (Lusztig [L5]). Let G be an arbitrary reductive group. Assume that
p and g are large enough. Then for each cuspidal character sheaf A;, the formula
in the conjecture holds.

Note that if the decomposition of the Lusztig induction R$.p is known, the
above result implies the conjecture (for p >> 0,¢ > 0). However such a decom-
position is known, at present, only for the case of connected center (cf. Corollary
3.2).

Once Lusztig’s conjecture is established (for example, in the case of connected
center), the next step towards the computation of irreducible characters is the de-
termination of scalars ¢, appearing in the conjecture. In this direction, Lusztig has
proved the following,

Theorem 4.5 (Lusztig [L3]). Assume that GF is an adjoint Chevalley group. As-
sume further that p = 1 (mod N) for some N, (for ezample, N = 2 for type B,,
N =4 for type D, and N =60 for type Eg). Then for almost characters R, whose

supports are contained in GE ., the scalars ¢, are determined.

We can also determine the scalar c; in the following special cases. In the follow-

ing, an almost character R. is called a unipotent almost character if R, is a linear
combination of unipotent characters.

Theorem 4.6 ([S3]). Assume that GF is a Chevalley group of classical type with
connected center. Assume further that p is odd. Then the scalar.c. is determined
for a unipotent almost character R,.

This can be generalized to the case of exceptional groups.

Theorem 4.7 (Liibeck, Shinoda, S). Assume that GF is an ezceptional group of
adjoint type. Assume further that p is good. Then the scalar ¢, is determined for a
untpolent almost character R,.
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Here we give the number of unipotent characters in the case of exceptional
groups.

Gz F, q E5 E1 Es
10 37 30 76 112

Remark. The above results provide an algorithm of computing unipotent charac-
ters. In fact, Liibeck “computed” all the character values of unipotent characters for
Fy and Eg by making use of the computer algebra system CHEVIE ([GPHLM]).
His program will work also for E7 and Eg. However in applying Lusztig’s algorithm
in practice, still there remains a problem in choosing rational unipotent classes in
a given geometric unipotent class. So in order to justify Liibeck’s computation, we
need to determine some parameters related to the choice of representatives (see the
next section).

5. THE COMPUTATION OF XAy,

We shall explain briefly Lusztig’s algorithm of computing characteristic functions
Tap, for A € (G)F. Here we consider an arbitrary reductive group G. Let A € L
be cuspidal, and put K = indg Agp. We assume that L is an F-stable Levi subgroup
of an F-stable parabolic subgroup P of G. We also assume that Ag is F-stable,
and fix an isomorphism gy : F*Ap23A4p. As in the case of maximal tori, any F-
stable Levi subgroups conjugate to L are parametrized (up to G*-conjugate) by the
conjugacy classes of W = Ng(L)/L. We denote by L,, an F-stable Levi subgroup
corresponding to w € W. It is known that End K ~ QWj): (a twisted group
algebra of a subgroup W, of W). In the case of connected center, it is actually the
group algebra of a reflection subgroup Wy. Now ¢y : F*Ap4 A, on L gives rise to
an isomorphism ¢, : F*Ap24 A4 on L, for w € W,. This induces an isomorphism
F*K 2~ K which is denoted also by ¢,,. We consider the characteristic function xx,,
of K. Then by using the orthogonality relations of the characters of W, it is shown
that the determination of x4, for various direct summand A in K is equivalent
to the determination of xx,, for various w € Wy. The class functions xx,, have
similixr properties as R$(#). In fact, if L, = T, and 4, € (f,)"' is obtained from
0 € TS, then x.,, coincides with R (8). Lusztig proved that X, also has the
character formula analogous to the character formula in section 2, where the role of
Green functions are replaced by generalized Green functions thw (w € W), which
are GF-invariant functions on G£;. Put, for E € W*,

Ce=WI"' Y Ew)QE, -
weW

Then the determination of Qf , is equivalent to that of Qf ;. for various E € WA,

We consider a pair (C,€£), where C is a unipotent class in G, and £ is an ir-
reducible character of Ag(u) = Zg(u)/Z%(u) for some u € CF. Now the set of
GF-conjugacy classes in C¥ is in bijection with the set Ag(u)/~r. We denote by u,
a representative in CF corresponding to a € Ag(u). Let us define a GF-invariant
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function f¢ on G&, by

_ J&(@) if z is GF-conjugate to u,,
Jd=) = {o ifz ¢ CF.

Then by the generalized Springer correspondence, for each Qf. g there corresponds a
pair (C, §) satisfying the following. Qf ¢ has support in CF (C denotes the closure
of C in G), and the restriction QF glcr of QF ¢ to CF coincides with A¢ f¢ for some
/\( € Q‘.

Lusztig showed, by modifying and generalizing the author’s method of comput-
ing Green functions, that there exists an algorithm of expressing Qf ¢ in terms of
various A¢fe. Hence in order to obtain a complete algorithm of computing xa,4,,
we need to determine the constants )¢ for each § € Ag(u)*. This problem is also
related to the choice of a “good representative” u € CF. It has been established in
the case of Green functions, i.e., in the case where L = T, but it is not yet solved
for generalized Green functions in general.

6. THE CASE OF DISCONNECTED CENTER

In the case where the center of G is disconnected, the main problem is the proof
of Lusztig's conjecture. For this we need to know the decomposition of the Lusztig
induction Rf_p. As in the case of connected center, one possible approach for this
would be the theory of Shintani descent. Hence it is important to determine the
Shintani descent. The typical example for such a group is GT = SL,(F,). In this
case we have the following result.

Theorem 6.1 ([S4]). Let GF = SL,(F,). Assume that m is sufficiently divisible.
Then the Shintani descent Shem/p can be described. In particular, almost characters
of GF are esplicitly given.

Note that however, this result is not enough to give a complete description of the
Lusztig induction. In the remainder of this section we assume that G is an arbitrary
reductive group.

e The Mackey formula

Another approach for getting the information on the Lusztig induction is the
following Mackey formula for Lusztig induction which is an analogue of the usual

Mackey formula of finite groups. We define a linear map *R$.p, called the Lusztig
restriction,

: "Ricp : C(GF[~) = C(LF[~)
as the adjoint functor of the Lusztig induction Rf.p. Let M be an F-stable Levi
subgroup of another parabolic subgroup @ of G. Put

E(L,M) = {z € G| LN*M contains a maximal torus of G}.

We shall formulate the Mackey formula as follows.
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(The Mackey formula.)

-G G L etM
Ricpo Ryicq = Z Rinsmcrong © Rinsmcpoem-
2ELP\E(LM)F MF

It is not yet known whether the Mackey formula holds in a full generality. It has been
verified in the following special cases, (a) P and Q are F-stable parabolic subgroups,
i.e., the case of Harish-Chandra inductions and Harish-Chandra restrictions, (b) L
and M are maximal tori of G. We note here that the Mackey formula implies the
fact that the Lusztig induction R§,p, depends only on L and not on P.

Recently C. Bonnafé proved the following result.

Theorem 6.2 (Bonnafé (B]). Assume that g is large enough, ( but no assumption
on p). Then the Mackey formula holds for any F-stable Levi subgroups L and M.

¢ Generalized Gelfand-Graev representations.

Generalized Gelfand-Graev representations have been introduced by Kawanaka,
by generalizing the usual Gelfand-Graev representations. In the case of disconnected
center, a similar approach as in the case of connected center, such as Deligne-Lusztig
theory, does not give enough information for irreducible characters. It is expected
that generalized Gelfand-Graev representations provide us necessary informations
in such a case. In fact, in the case of SL,(F,), generalized Gelfand-Graev characters
are used to parametrize irreducible characters in a more precise way than Lusztig's
parametrization. Now for each unipotent element u € G, there corresponds an F-
stable parabolic subgroup P with unipotent radical Up, i.e., the parabolic subgroup
associated to the unipotent class of u in G¥. Also one can construct an irreducible
representation A, of Uf. Then I, = Indgg- A, depends only on the GF-conjugacy

class of u, and is called the generalized Gelfand-Graev representation of GF
associated to the class of u. Note that if u is a regular unipotent element, then I,
coincides with the usual Gelfand-Graev representations.

Kawanaka decomposed I, into irreducible characters in the case of GL, for
arbitrary p and ¢, and also treated the exceptional groups of adjoint type, (see,
e.g., [K]). On the other hand, under the assumption that p and q are large enough,
Lusztig described the decomposition of I'y in terms of the characteristic functions
of character sheaves. Using this, he showed the following result.

Theorem 6.3 (Lusztig [L4]). Assume that p and q are large enough. Then for any
p € GF, there ezists a unique unipotent class C in G such that decp p(g) #0, and
having marimal dimension among the classes with this property.

The class C attached to p is called the unipotent support of p. Recently, M.
Geck succeeded in removing the assumption on p, g of Lusztig’s result in the case
where p is good, and then extended it with G. Malle to the case where p is bad.

Theorem 6.4 (Geck [G], Geck-Malle [GM]). The statement of Theorem 6.3 holds
for any G with no restrictions on p and g.

We close this note by stating the following result, which discusses the Lusztig
restriction of Gelfand-Graev characters.
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Theorem 6.5 (Digne-Lehrer-Michel [DLM]|). Assume that p is good and that q is
large enough. Let I', be the Gelfand-Graev character of GF associated to a regular
unipotent element u € GF. Let L be an F-stable Levi subgroup of a (not necessarily
F-stable) parabolic subgroup P of G. Then there ezists a regular unipotent element
v € LF such that
‘Rip(I) = egerTLy,

where I'y, is the Gelfand -Graev character of LF associated to v, and eg (resp. €,)
is the split rank of G (resp. L), respectively.

Note that in the case of disconnected center, it follows from the theorem that a
rational regular unipotent class in G¥ determines a rational regular unipotent class
in each F-stable Levi subgroup L. However, the correspondence is not explicitly
known.
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THE SEMISIMPLE APPROACH TO THE CLASSIFICATION
OF THE FINITE SIMPLE GROUPS

RONALD SOLOMON
The Ohio State University

To date there have been two successful approaches to the proof of the classi-
fication of the finite simple groups, which I shall call the “semisimple approach”
and the “parabolic approach”. Neither is sufficient by itself to yield a complete
classification theorem, but in unison they have led to the existing classification
proof. Although other approaches have been envisioned, the most active line of
inquiry at present relates to the appropriate demarcation lines between these two
approaches. I shall describe approximate definitions for these two approaches and
discuss various possibilities for these demarcation lines.

Much of the early work in the modern era of the classification proof centered
around Brauer’s philosophy of identifying a finite simple group via the centralizer of
one of its involutions. This approach was articulated by Brauer in his International
Congress address in 1954 and gained further credibility when Feit and Thompson
proved that every non-abelian finite simple group does indeed contain an involution.

Much of the work of Brauer and his students Fong and W.J.Wong focussed on the
characterization of classical linear groups over fields of odd characteristic in which
elements of order 2 are semisimple (diagonalizable). The work of Gorenstein and
Walter directed towards “killing the cores” of involution centralizers continued this
pattern of focussing attention on target groups in which involutions were semisimple
elements (in the natural linear representations of the groups). -

In the early 1970’s as this phase of the classification effort neared its completion,
Gorenstein and Lyons directed their attention towards the remaining problem of
characterizing the finite simple groups of Lie type in characteristic 2, in which in-
volutions were unipotent elements. At this point they conceived the idea of shifting
attention from the prime 2 to a different prime p such that elements of order p
would again be semisimple elements in the target group G.

This indeed became the ultimately successful strategy for the original classifi-
cation proof and it may be formulated in the following way. All approaches rest
on the fundamental concept of the Fitting and generalized Fitting subgroups, first
fully defined by Helmut Bender.

Definition. A finite group is semisimple if it is the product of commuting quasi-
simple groups. If H is a finite group, then E(H) is the mazimal normal semisim-
ple subgroup of H, F(H) is the marimal normal nilpotent subgroup of H and
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2 RONALD SOLOMON

F*(H)= E(H)F(H). Moreover if p is a prime, then Op(H) is the mazimal normal
p-subgroup of H (which is contained in the Fitting subgroup F(H)).

First Semisimple Approach to the Classification.

Definition. Let p be a prime and let g be an element of the finite group G of prime
order p. We say that g is a semisimple element of G of order p if E(Cg(g)) # 1.
We say that g is a unipotent element of G of order p if F*(Cg(g)) = O,(Csl(9))-

B-Theorem. Let p be a prime such that G has p- rank at least 3. Then either G
contains a semisimple element of order p or every element of order p is unipotent,
(In the latter case we say that G is of characteristic p type.)

Step 1: The Semisimple Case. If possible find a prime p such that G contains
a semisimple element of order p. Choose p = 2, if possible. Implement Brauer’s
strategy to characterize G via the centralizer of a semisimple element of order p.

For the prime p = 2, Aschbacher’s Component Theorem gives fundamental in-
formation about the structure of the centralizer of a suitable semisimple element of
order 2. In an inductive context Aschbacher’s result can be extended to all primes
p. Then induction reduces Step 1 to a “finite” problem of Brauer type.

Step 2: The Parabolic Case. If no semisimple element can be found in G, then
by the B-Theorem, this has one of three possible implications:

(1) G has 2-rank at most 2; or

(2) G is of characteristic 2-type and G has 2-local p-rank at most 2 for all odd
primes p; or

(3) G is of both characteristic 2-type and characteristic p-type for some odd
prime p such that G has 2-local p-rank at least 3.

The first case was historically treated first and includes the Odd Order Theo-
rem of Feit and Thompson, the Brauer-Suzuki Theorem, the Dihedral Theorem of
Gorenstein and Walter and the 2-Rank 2 Theorem of Alperin, Brauer and Goren-
stein. (Operationally much of the analysis of the Dihedral and 2-Rank 2 Theorems
fall within the Semisimple Methodology, although the final identifications of the
target groups are as BN pairs of rank 1 or 2.)

The second case is the Quasi-Thin Theorem, currently being given a final treat-
ment by Aschbacher, S.D.Smith and Meijerfrankenfeld.

The third case was handled by Klinger and G. Mason extending results of
J.G.Thompson,

In this original proof of the Classification Theorem, the Semisimple Method is
used whenever possible, i.e. whenever G contains a semisimple element of prime
order. Only in extremis does one resort to the parabolic method — primarily for
the Odd Order Theorem and the Quasi-Thin Theorem, though also for certain
Uniqueness Theorems.
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THE SEMISIMPLE APPROACH TO THE CLASSIFICATION OF THE FINITE SIMPLE GROUPS3ll

Second Semisimple Approach to the Classification.

In the “second generation” proof of the Classification Theorem, the strategy
remains the same with one significant modification. It is difficult to detect from
internal evidence the fact that extensions of a group of Lie type in characteristic
2 by a field automorphism of order 2 are not simple groups. For this reason in
the original proof of the Classification Theorem, these simple groups are identified
twice — in the Semisimple Case starting from the centralizer of a field automorphism
of order 2 and in the Parabolic Case starting from the centralizer of a semisimple
element of odd order or from a pair of maximal parabolic subgroups. To avoid this
redundancy, the second generation strategy modifies the definition of semisimple.
The price we pay is a more complicated definition and a definition which rests on
the inductive nature of the proof. In fact I will not give the precise definition but
only a reasonable approximation.

Definition. If H is a p-local subgroup of the finite simple group G and if L is
a quasi-simple normal subgroup of E(H) of order divisible by p, then we call L a
p-component of H.

Definition. Let G be a finite simple group and let g be an element of G of prime
order p. We say that g is strongly semisimple if E(Cg(g)) has a p-component L
which is neither a sporadic group nor a group of Lie type in characteristic p.

As suggested above the principal purpose of the definition is to distinguish the
“truly” semisimple elements from the field automorphisms of order equal to the
characteristic of the field. The domain of the parabolic method is now expanded
slightly as follows.

Definition. Let G be a finite simple group. We say that G is of even type if G has
2-rank at least 3 and G contains no strongly semisimple involutions. Analogously G
is of p-type (for the odd prime p) if G has p-rank at least 3 and contains no strongly
semisimple elements of order p.

We remark that insofar as the actual target simple groups are concerned, the
effect is to shift the border only slightly, namely most of the sporadic simple groups
.move from being of semisimple type to being of even type. In point of fact however,
most of the sporadic simple groups were identified in the original approach at least
once by parabolic methods - either as quasi-thin groups or as groups in which some
involution centralizer is of symplectic type.

New Step 1;: The New Semisimple Case. If possible find a strongly semisimple
element in G of prime order. Again choose an involution if possible. In any case
implement Brauer’s approach to identify G.

New Step 2: The New Parabolic Case. Again if Step 1 fails, we are in one
of three possible cases:
(1) G has 2-rank at most 2; or
(2) G is of even type and the 2-local p-rank of G is at most 2 for all odd primes
p; or
(3) G is both of even type and of p-type for some odd prime p such that the
2-local p-rank of G is at least 3.
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4 RONALD SOLOMON

The third case was handled by Gorenstein and Lyons extending the work of
Klinger and Mason. It leads to the largest sporadic simple groups as well as a few
classical groups. The second case is the extended Quasi-Thin Theorem, currently
being treated by Aschbacher, Smith and Meierfrankenfeld. '

A Third Approach.

One serious objection to the first and second approaches to the Classification
proof is that the Semisimple Case rests eventually on quite difficult Uniqueness
Theorems, which in the even type case rely on elaborate parabolic analysis. Thus
the parabolic methodology is invoked on an emergency basis in two principal con-
texts — the Quasi-Thin Case and the Uniqueness Case.

It has been suggested by Bernd Stellmacher and Ulrich Meierfrankenfeld that it
would be more natural and conceptually unified to treat the entire characteristic
p-type case (at least for p = 2) via parabolic analysis, relegating the semisimple
approach to the traditional Brauer context of semisimple involutions. I believe
that it would even more natural in this spirit to treat the entire even type case
by parabolic methods. Thus a potential third approach to the Classification proof
might be subdivided as follows.

Potential Step 1: The Parabolic Approach. If possible, find a prime p such
that G is of p-type. Identify G via p-parabolic methods.

It should be noted that the “amalgam method ”implemented by Stellmacher and
Meierfrankenfeld presupposes that G is generated by the parabolic overgroups of a
fixed Sylow p-subgroup of G. When this fails, one is again in a Uniqueness Case.
For p = 2, this uniqueness problem was handled by Aschbacher relying eventually
on the fundamental Strongly Embedded Subgroup Theorem of Suzuki and Bender.
For odd p there is at present no good strategy for treating the resulting uniqueness
problem and so for the present this Step 1 is best regarded as an alternate approach
to the Even Type Case. Indeed it is precisely by this subdivision of the problem that
the uniqueness theorems for odd primes can be completely circumvented, except of
course for the Odd Order Theorem.

Potential Step 2: The Semisimple Approach. If Step 1 fails, then in particu-
lar, some involution in G is strongly semisimple. Identify G via Brauer’s approach
in this case.

Indeed even if Step 1 fails only in the weak sense that G is not of even type,
then some involution in G is strongly semisimple and the classical approach will
complete the Classification proof. Step 2 of this method is not “potential *. What
remains to be accomplished is the resolution of the full even type case (or even the
characteristic 2-type case) by amalgam methods.

CoLuMBUS, OHI0 43210 USA
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J-Components in finite groups
Bernd Stellmacher

Christian-Albrechts-Universitit zu Kiel

1. Introduction. This talk is a survey of my joint work with U. Meierfrankenfeld on the
embedding of J-components in finite groups.
The proof of the classification theorem for the finite simple groups, very roughly, falls into two

major parts according to the following two cases:

(I} There exists a 2-local subgroup M such that F*(M) is not a 2-group.
(11} All 2-local subgroups M satisfy F*(M) = Oz(M) (or equivalently Ca(O2(M)) < O2(M)).

For the first case the fundamental work of Aschbacher on components gives the frame work.
Our work is related to the second case, and our arguments allow to substitute 2 in (II) by an arbi-
trary prime. Such a group all of whose p-local subgroups satisfy (1) is call a group of characteristic
P type. In fact, we can furhter relax condition (II) by demanding this property only for certain of
the p-local subgroups of G, but I will omit these technical details.

¢From now on G is a finite group of characteristic p type. We will need two further hypotheses
on the p-local subgroups M of G:

i) Schreier’s conjecture holds for every simple section of M.

ii) The simple sections of M are known simple groups.

Both conditions hold for a minimal counterexample in the proof of the classification theorem,
and condition i) follows from ii). I have stated them seperately since the first one is basic for our
investigation while the second one is only used in a particular case to give a “round” result. I will

comment on that later.

2. p-Components. Let M be a p-local subgroup of G. There do not exist components' of
M since Op( M) contains its centralizer. But there is an obvious way of generalizing the concept of
a component so that it fits p-local subgroups satisfying (II):

Let X be a subgroup of G and K a subgroup of X. Then K is a p-component of X, if

! A component of M is a quasisimple subnormal subgroup of M.
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(a) K is subnormal in X, and

(b) K = OP(K), and K/O,(K) is quasisimple.
In particular, if X = M as in (II), then KOp(M)/Op(M) is a component in M/O,(M). Of course,
in genereal, there might be no components in M/O,(M). We will introduce further below the

notion of a solvable J-component to cover this situation.

Because of (II) p-components K of M satisfy
(*) Cx(0p(K)) < Op(K).

Let C be the set of all K < G such that K is a p-component in some p-local subgroup of G. We
are interested in the following questions:

What can be said about the embedding of elements of C in p-local subgroups? Are there
elements in C which are contained in a unique maximal p-local subgroup?

In the investigation of components “cross characteristic” properties are used. In the case of
p-components this is not possible. The non-central chief factors of K in O,(K) (K € C) are obstruc-
tions for nice inheritance properties of centralizers of p-elements in K and K/Op(K), respectively.
On the other hand, the action of K on non-central p-chief factors might give additional information;
at least, if the p-components are chosen appropriate. This leads to the definition of a (solvable)

J-component. First we fix the following notation?:
S € Sylp(G), Z = 2(S),C = Cc(2),J = J(S).

An arbitrary subgroup K is a J-component of G, if
(1) K is a p-component of [K,J] and
(2) Op(K) £ Z(K);
and K is a solvable J-component of G, if
(1) K/Op(K) is a g-group (g a prime), and
(2) K =|K,J] = OP(K) and Op(K) £ Z(K).

There are two basic properties of J-components K which are essential for the entire investiga-

tion :

2 J(S) denotes the Thompson subgroup of S.
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Lemma 1. Let K be a J-component and R a p-subgroup of G. Suppose that (K,J) < Ng(R).
Then R £ Ng(KX).

Proof. Note first that R normalizes {JX) since J = J(RJ) and KR = RK. Note further that
K < |K,J1 < {(J%) S (K, J)R.

K is subnérmal in [K, J] and thus in (K, J)R; in particukar, K is subnormal in KR. Now OP(K) =
K implies that K = OP(KR).

The second property is not elementary. For p = 2 it is a result of Aschbacher and Timmesfeld

(see [Ti]); for arbitrary p recently Chermak [Ch] gave a short and self-contained proof.

Lemma 2. Let K be a J-component of G. Suppose that [Z(Op(K)),K] # 1. Then J £
Ng(K).

Suppose that K is.a J-component of G and (K,J) < L for some p-local subgroup L of G. The
first lemma shows that Op(L) < Ng(K). The second lemma together with Schreier’s conjecture
allows to handle the embedding of X in F*(L), where L := L/CL(Z(0p(L))); of course with some

care, since Lemma 2 does not apply to J-components satisfying
[K,Z(Ou(K))] = 1.

Since one cannot exclude such “central” J-components the strategy is to deal with them from the
very beginning. More precisely, we start with J-components which are p-components in C (=

Cs(Z}) and investigate their embedding in other p-local subgroups.

3. Results. We use the following notation:
C,: the set of J-components of G,
&Ss: the set of solvable J-components of G, and

SCy:=C;US8,.

An element K € 8C; is said to be a uniqueness subgroup for J, if

(U1) {K,J) is contained in a unique maximal p-local subgroup M of &, and
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(U;) K is subnormal in M.

And K is weak uniqueness subgroup for J, if (Uz) holds for every p-local subgroup M containing
(K, J}.

Theorem 1. One of the following holds:
(a) SC; =8, and Ng(J) is the unique maximal p-local subgroup containing J.
(b) C; = 0, and every element in S; is a weak uniqueness subgroup for J.

(c) There exists a uniqueness subgroup for J in C;.

In case (c) of Theorem 1 an explicit "algorithm” can be given to find uniqueness subgroups.

This is described in the next theorem. We use the following further notation:

¢} == {K € Cs | [2(05(K)), K] #1}.

C; :={K €C;|[Z2(0,(K)),K]=1}.

Ki(X):={K €C} | {X,J) < Ng(K)}.

Cs(X): the set of K € C which are subnormal in the subgroup X;
similarly C} (X) and C; (X) are defined.

Theorem 2. Suppose that C; # @. Then one of the following holds:

(a) SC;(C) = 0. Every maximal element in C; is a uniqueness subgroup for J.

(b) C¥(C) # 8. For every maximal element
Ke U,euau)C’

the maximal elements of C; containing K are uniqueness subgroups for J.
(c*) Cs(C) # Cj'(C) = I;(K) = @ for every K € 8C;(C), and every element of C;(C) is a
uniqueness subgroup for J.

(d) Cs(C) # C¥(C) = 8 and K (K) # @ for some K € SC;(C). For every such K and

E € K;(K) the maximal elements of C; containing E are uniqueness subgroups for J.

It is in case (c) where condition ii) is used to solve a certain pushing up problem, which allows

to conclude that a weak uniqueness subgroup for J is already a uniqueness subgroup.
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Small modules

Gernot Stroth!

Fachbereich Mathematik und Informatik
Institut fir Algebra und Geometrie
Martin-Luther-Universitit Halle Wittenberg
06099 Halle, Germany

There is no well defined concept of small modules. First of all we will give some motivation
why a certain class of modules, which we will call small lateron, is of interest.

a) Failure of factorization:
Let G be a group with

F*(G) = Op(G), and S € Syl,(G)
A classical result due to G. Glauberman [Go, 8.2.11] is:
If p is odd and G is p-stable, then Q,(Z(J(S))) QG.

Here p-stable means that p*SL,(p) is not involved. A certain extension of this result
for p = 2 was recently established by B. Stellmacher [Stell]. The result tells us that the
structure of G is determined by the normalizer of a well defined characteristic subgroup
of the Sylow p-subgroup S.

Now we look at a more general situation. Set Z = {,(Z(S5))), then Z < Q,(Z(0,(G))).
If J(S) £ Co(Z) then we get

G = Ca((2(85)))Ns(2(J(5)))-

In that case the structure of G is determined by the structure of two normalizers of well
defined characteristic subgroups of S.

So assume that J(S) £ Cg(Z). Then there is some
A € A(S) = {B|B £ S,elementary abelian of maximal rank}
such that A £ Cg(Z). Now ZC4(Z) is also elementary abelian, hence
|2Ca(2)| < |A]
12/C2(A)| £ 12/Z n A] < |A/Ca(2).

So what we get is a so called F-module (failure of factorization).

1Email:stroth@coxeter.mathematik.uni-halle.de
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Definition Let G be a group and V be a faithful GF(p)G-module. Then V is called a
F-module for G if there is some elementary abelian p-subgroup A in G, 1 # A such that

[V : Cv(4)] < |A].
Any group A with this property is called an offending subgroup.

b) Amalgam method :

Here the situation is as follows. There are two groups P, and P, with Op(P;) = F*(PR),
sharing a Sylow p-subgroup S. We introduce the coset graph I' = P,g U Pk, whose ver-
tices are the cosets of P, and P; and edges are the pairs { P\g, P;h} with P,g N P3h # 0.
We denote the vertices P, and P; of I' with 1 and 2, respectively. Let § € T then the
stabilizer Pj of g is conjugate to P, or P;. Set Z; = ((2(S))P), i = 1,2. Let

b; = min(d(a,?) | @ € T': Z; £ P; for some 8 € A(a))

and

b = min(by, by).
One case which arises quite often is
d(l,a) =b,2, < P,, 2, < P, and (2, Z,] # 1.
Then by symmetry we may assume that
1Z1 : C2,(Za)| £ |2a : C2.(2))
and again we have an F-module Z,. In fact we see a little bit more

[ZI,ZO,Z,,] S [Z[ n Z,,Z,,] =1

So Z, is a quadratic module. But this is for #-modules always the case, as can be seen
by Thompson replacement [Go].

So we can see that F-modules do play an important role. There is a classification of F-
modules in characteristic two due to M. Aschbacher [Asch] for alternating , sporadic and
Lie type groups in odd characteristic and B. Cooperstein [Coop] for Lie type groups in
characteristic two. Unfortunately the latter depends on unpublished results of B. Coop-
erstein and G. Mason [CoMa).

Suppose now p =2 and P;/0:(P,) = E;3. Suppose further Q;(Z(S5)) A P; and a ~ 2. We
have [Z),2Z,) = 1 and further

|2y : 2,N Pp| =2 and (2, N Py, Z5) < Zp.
Let us assume that we have symmetry , i.e. |Zp : Zs N P,| < 2. Then we may assume

|Zl : Cz,(Zp n P[)I S |Zg H Cz,(Z, n Pp)l
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Now as the index was 2 we get
121 : Cz,(Zp N P)| < 2|Zg 0\ P [Czynp (Z1)]-
So if Zg N P, acts notrivially on Z; we get what is called an F + 1-module

Definition Let G be a group and V be a faithful GF(p)G-module. Then V is called a
F + 1-module for G if there is some elementary abelian p-subgroup A in G, 1 # A such
that

[V : Cv(A)| < plAl.

Any group A with this property is called an offending subgroup.

Again there is a classification of F'41-modules in characteristic two due to M. Aschbacher
[Asch] for alternating, sporadic and Lie type groups in odd characteristic and P. McClurg
[McC] for Lie type groups in characteristic two. Unfortunately the latter is not published
and also depends on the unpublished work mentioned before.

All these arguments leading to F- or F + 1-modules in the amalgam method work very
well if b is large. For small b one needs more information.

Let b = 2, P,/O,(P)) = Z; and (2) = 21(Z(S)) & P». Then Z;, = (z,t) is of order 4.
Set E = (Z[*). Then E' = (z). So this situation is very similar to the extraspecial
situation in the classification of the finite simple groups. So assume for the moment that
Py = Cg(z) and O5(Cg(z)) is extraspecial, Z; < O;(Cq(z)). Then 02(Cq(t)) N P, is of
index two in O3(Cg(t)). Furthermore O2(Cg(t)) N 02(Cqg(z)) is elementary abelian. Let
now |03(Cg(z))| = 22**'. Then |02(Cq(2)) N 02(Cc(t))| < 2"*! and so

|4] = |02(Cq(t)) N P2/02(C(2))] 2 2.
The usual action of A on 03(Cc(2))/{z) is that it centralizes exactly (t) so we get that

102(C6(2))/(2) : Contcatansin(A)] < 2|AP.
This leads to the following definition

Definition Let G be a group and V be a faithful GF(p)G-module. Then V is called
a 2F + 1-module for G if there is some elementary abelian p-subgroup A in G, 1 # A
such that '
[V : Cv(A)] < plAP%.

Any group A with this property is called an offending subgroup.

Now we can say what we will mean by a small module. These are quadratic modules,
F-modules, F + 1-modules and 2F + 1-modules.

Definition Let G be a group and V be a faithful GF(p)G-module. Then V is called
quadratic if one of the following holds
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(1) pis odd and there is some element g € G with [V, g,9] = 1.
(2) p=2 and there is some fours group A < G with [V, A,A] = 1.

For the remainder we will restrict ourself to the case p = 2. The following is joint
work with U. Meierfrankenfeld. In the classification results for the F-modules quoted
before the usual approach is to obtain lower bounds for the codimensions of centralizers
of involutions in modules for G. Then using this information one either see that there are
no F-modules or just a small list of possible modules. In contrast our approach uses the
fact that F-modules are quadratic.

Theorem A [MeiStr1][MeiStr2] Let V be an irreducible faithful GF(2)G -module,
where E(G) is sporadic, alternating or a Lie type group in odd characteristic which s not
in even characteristic too. If V is quadratic then E(G) is one of the following :

1. Myz,Ma2,3 - Maa, Moy, J2,Coy,Coq,3 - Suz, the modules are known,
2. A, and the module is the natural one or the spin module

3. 3-Us(3) and V| = 212

This now can be used to classify the F-modules

Theorem B Let V be an irreducible faithful GF(2)G -module, where E(G) is sporadic,
alternating or a Lie type group in odd characteristic which is not in even characteristic
too. If V is an F-module, then E(G) = A, and V is the natural module or n < 8 and
V| = 16, or E(G) = 3As and |V| = 64.

So for quadratic and F-modules we are left with groups of Lie type over GF(q), ¢ = 2™.
Unfortunately there is no classification of quadratic modules. We have the following

Definition Let G = G(q), ¢ = 2™, be a group of Lie type and V be a faithful mod-
ule over GF(2). Then V is called strong quadratic if there is a quadratic fours group
which is not contained in any root subgroup but intersects a root subgroup nontrivially.

Theorem C [Str] Let V be an irreducible faithful GF(2)G -module, where G = G(q) is
a group of Lie type, g = 2™, If V is strong quadratic, then one of the following holds

1. G = (S)L(n,q),(S)U(n,q),Sp(2n,q), Fa(q) and V = V(A) for some fundamental
weight A.

2. G = Q*(2n,q) and V is the natural or a half spin module.
3. G = Eg(q) and V = V(X)) or V(Je)
4. G= Ex(q) and V = V(A7)
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5. G2 %Eg(q) and V = V(A\y)
6. G = Gy(q) or3Dy(q) and V is the natural module.

Theorem D Let V be an irreducible faithful GF(2)G -module, where E(G)/Z(E(G)) =
G(q) is a group of Lie type, q =2™. If V is a F-module then one of the following holds

1. G(q) = La(q), Sp(2n,q),2%(2n,q) or Un(q) and V is the natural module or its dual.
2. G(q) & La(q) and V is the exterior square of the natural or dual module

3. G(q) = Sp(6,q) and V is the spin module

4. G(q) = Q*(8,q) or Q*(10,9) and V is a half spin module

5. G(q) & Ga(q) and V is the natural module

The problem in the proof is that we do not know that F-modules are strong quadratic.
We just know that they are quadratic. In what follows we will sketch the proof using the
group Eg(q) as an example.

We first collect some facts about modules about modules for our groups of Lie type, which
are helpful for the classification of F-, F' + 1- and 2F + 1-modules.

(1) Let 1 # V be an irreducible module for G(q) and P be a parabolic. Then Vp =
Cv(0O,(P)) is an irreducible P-module. Further V is determined by the Vp.

(2) (Steinberg tensor product theorem) Let G = G(q) be a group of Lie type and V be
an irreducible module over GF(q). Then

V=Vla|®_._®vltn

where the V; are basic irreducible GF(q)G-modules. Further distinct [-tuples
(My,... M) and (M{, ..., M]) give nonisomorphic GF(q)G-modules.

(3) fV = X®W isa GF(g)-module for G, an A acts quadratically on V, then |4| < ¢.

(4) If V is a F-module for G(q) with offending subgroup A with |A| £ ¢, then V is
strong quadratic

(5) If A is a maximal a-offender, i.e. |Cv(A)||A|* maximal, then also (A, A%), g€ G is
a, maybe nonabelian, maximal a-offender.

(6) (Timmesfeld replacement) If there is a normal offender A, there is a normal offender
B contained in A which acts quadratically.

(7) Let V be an F-module for G and W; be an invariant subspace. Then W, is a trivial
subspace or V] is an F-module too.
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Let now G = Eg(g) and V be an irreducible F-module. The whole proof goes by induction
on the Lie rank. So we will assume that the theorem holds for all groups of rank smaller
then 6. First of all we may assume that V is defined over GF(g). Next we will assume
that V is not strong quadratic. Then by the facts (3) and (4) V is not a tensor product.
So by fact (2) V = V(X), A some weight. We will choose numbering of weights such that

23
‘[4

We look at the maximal parabolic G4 which is an extension of ¢'*?® by GLg(q).

O
[ 1]
[-1.

By fact (4) we have [A| > q. If A < 0;(G4), then we have that A N Z(0:(G,)) = 1.
Choose a € Al. Set C = Co,(c,)(a). Then |02(Gy) : C| = q. Let z € 02(Gy) \ C, then
there is 1 # b € Ca(z). So

(a,b)* = {az,b), for some 1 # z € Z(0:(G.))

acts quadratically on V. But then {z,b} acts quadratically and so V is strong quadratic.
So we have that there is no quadratic A in 02(Gy). Set V; = Cv(02(G,)). By fact (7) V4
is a F-module for G4/02(G4). Hence by induction V; is either trivial of some V(}) for
some fundamental weight A\. Now we may assume that Vg = Cv(02(Gg)) is a nontrivial
module. If A < 0;(Gg)) then {A%) = 0,(Gs) is an offender. And so we get that 02(Gs)
acts quadratically, and V is strong quadratic.

So we have that Vs is an F-module. If Vi = Cv(03(G1)) is trivial, we get V = V(};)
and we are done. So we may assume it is nontrivial. Again A £ 02(G)) and so it is an
F-module and we see that V 2 V(Xg) or V()\4).

Let V = V(\y). Then V is the adjoint module and so |V| = ¢"®. Now by fact (5)
G = {A? | g € G) is an offender too, and so |V| > |G|, a contradiction.

In case of V(A1) and V()g) one has to investigate both modules very carefully, as they
are F 4 1-modules.

Next we turn to the F 4 1- and 2F + 1-modules. For this we change the definition of
F 4 1- and 2F 4 1-modules a little bit just for the case of G(q).

Definition Let G = G(q) and V be a faithful GF(2)G-module. Then V is called a
F 4 1- or 2F + 1- for G if there is some elementary abelian p-subgroup Ain G, 1 # A
such that |V : Cy(A)] £ q]A| or g]AJ?, respectively. Any group A with this property is
called an offending subgroup.

Theorem E Let V be an irreducible faithful GF(2)G -module, where G is a quasisimple

group G(q), g =2™. Suppose V is an F 4 1-module but not an F-module. Then one of
the following holds
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1. G(q) = Sp(8,q) and V is the spin module
2. G(q) =2 U(3,q) and V is the natural module
3. G(q) = Sz(q) and V is the natural module
4. G(q) = Eg(q) and V = V(X;) or V()¢)
5. G(q) = Ga(q) and V = V(1)
6. G(q) = La(q?) and V= V(X))@ V(\)°
Theorem F Let V be an irreducible faithful GF(2)G -module, where G is a quasisimple

group G(q), ¢ = 2™. Suppose V is an 2F +1-module but not an F + 1-module. Then one
of the following holds

1. G(q) = Le(q) or Us(q) and V = V(1)

2. G(q) = Sp(2n,q) and V = V(1)

3. G(q) = Sp(10,q) and V is the spin module

4. G(q) = Q-(8,9), N-(10,q9) or N+(12,q) and V is a half spin module
5. G(q) = Fy(q) and V = V(3,) or V(\y)

6. G(q) = Ex(q) and V 2 V())

7. G(q) = Sp(4,¢%) and V 2 V(\) ® V(\)°

8 G(q) = Ly(¢®) and V= V(L) Q V(M) V(M) .

There is a little but important difference between Theorem B and Theorem E or Theorem
F. In the first case the offlending subgroup is contained in AutG(q), while in the latter
two cases it has to be contained in G(g) itself. The extension of these results to AutG(q)
is in progress.

As can be seen from the examples F + 1-modules do not have to be quadratic. So we
have to change our approach. For this we define a new class of modules

Definition Let G = G(gq), ¢ = 2™ be a group of Lie type and A,,..., P, the set of mini-
mal parabolics containing a Sylow 2-subgroup. Let i be some natural number. A faithful
GF(2)G-module is called an iC-module if there is some parabolic P; such that O'(P;)
has at most ¢ nontrivial chief factors on V.

The relation between the :C-modules and our F + 1- or 2F 4 1-modules is as follows.

Let V be an F + 1- or 2F 4 1-module and A be an offending subgroup. Let z € A.
Then |V : Cy(z)| < q|A| or glA]’. There is some P; and some conjugate y of z with
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¥ € P;\ O3(P;). So on any nontrivial O’(P;) chief factor W, we have |W : Cw(y)| 2 g
Hence we see that O'(P;) has at most

log,(|A]) + 1 or 2log,(|A]) +1

nontrivial chief factors. So we have a {C-module for i = log,(|A]) + 1 or 2log (|A]) + 1.

If m is the g-rank of G then we would like to have a list of (m + 1)C- and (2m + 1)C-
modules. So the first step of the proof is to get an overview over these modules.

Let V = V(A), A = T;4; Ai, A some dominant weight. Then W; is the stabilizer of A in

the Weyl group W. Let
Q={vy|we W}

Then one can show that the number of nontrivial chief factors of P; on V() is exactly
the number of nontrivial orbits of w; on §! and so on W/W),.

I just will give the formula if all roots are of the same length. Let & be the rootsys-
tem and &, be the roots just using the fundamental roots in J.

_1 |4
oy = 2|W/W.1| (l 2] )

Further if J C J'C I = {1,2,...,n} we get

05 2 |Ws/Wilos

Now we get for example

P |

Proposition Let W be of type A;. Putn=14+1 and m = ';—1 ifn is even and m =
if n is odd. Suppose that J C I with oy <2m +1. Then J and o; are as follows, where
the last three column state for which values of n, 0 < m,m+ 1 and 2m + 1 respectively.

weight 0y og<m |log<m+1|og<2m+1

Al A 1 all all all

A2, An-a n—2 4<n 4<n 4<n

)\3,*"_3 (";2) 6<n<8|6<n<9 6<n

Aty An-q ( "2 ) never never 8<n<9

AL+ Aoy 2n -3 4<n 3<n 3<n
M+ s+ Apa| 20 =3 4<n 3<n 3<n
AL+ Ane2, A2+ A I";?Lgﬂ-_"l never never n=235
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For our example E(q) we get

Proposition Let W be of type Eg and put m = 16. Suppose that J C I with oy < 2m+1.
Then J, and o; are as follows, where the last three column state whether oy < m,m + 1
and 2m + 1, respectively.

weight |ojy oy <m|oy<m+1|oy<2m+1
A,%6, | 6 | Yes Yes Yes
T A 21 No No Yes

Proof. We have |[W|=|05(2)| =27-3%-5 and || = 72.

Suppose first that J = I'\ {k} for some k € I. If k =1 or 6, then |W,| = |21Sym(5)| =
27.3.5 and |®)] = 40. Thus oy = 6. If k = 4 then |W;| = [Sym(6)| = 2*-3?- 5 and
|®s] = 30. Thus oy =21.

If k = 2,5, then |W;| = |25ym(5)| and |®,| = 22. This gives oy = 75. If k = 3, then
|Ws| = [25ym(3) x Sym(3)| and |®,]| = 14, so we get oy > 100. Moreover clearly no
case with |\ J| 2 2 is possible, besides maybe V(A; + Ag). But there |W;/W)| > 5, a
contradiction.

So for Eg(gq) we just have to show that V(Ay) is not 2F + 1. This is the adjoint module
and we easily get the structure as G4/0,(G4)-module

V(Xs)

10 V(A + As)

V(Xs)
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Let A £ 02(Gy). As V(A + Xs) is not 2F + 1 for Lg(g), we get that the index of the
centralizer of A/A N Oz(Gy) in this module is at least [A/A N O02(G4)|*¢?

As V()3) is not F + 1, we get that the centralizer of A/A N 0x(G,) is at least |A/AN
031(G4)|q*. Now we get that the index of the centralizer of A is at least

|A/ANO3(G)IPg*|AN 0a(Ga)lg < qlAP

Hence we get

glAP < 1AN 0x(Gy)PP*
So also in the case of A < 03(Gy) we get
IV : Cv(AN 0:(Ga))| < |AN O2(G)PPE.

Now we can apply fact (5) with a = 3.5. We get that {(A N 02(G,4))%) = 02(Gy) is 2
3.5-offender. So we have

= |V : Cv(02(Ga))| < |02(G4)P* = ¢*'3° < g™

This contradiction proves the theorem in case of G = Eg(q) and V = V(A).

Just tensor products are left. Here is the corresponding formula for tensor products.

Let V; ® V; be a tensor product of two G-modules Vi and V2 over GF(q) and P; be a
parabolic with L; = OP'(P;). Suppose that L possesses on V; I; noncentral and k; central
chieffactors, { = 1,2. Then L; possesses on V; @ V; at least ;3 + l}k2 + Izk; noncentral
chieffactors.

Using this formula it is easy to see that in case of G = Eg(g) no tensor products occur.

What is left is to investigate F° + 1- and 2F + 1-modules for alternating, sporadic and
groups of Lie type in odd characteristic. Furthernore results on all this modules for p odd
are also of interest.
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Abstract

In this short survey we focus on the absolute constant bound conjecture on the geometric
girths of distance-regular graphs and some related problems.

1 Introduction

We use the following notation throughout this survey. Most of them are standard, for the general
theory closely related to this article, we refer the readers to two excellent monographs [1, 8].

e I' = (VTI', ET) : a connected graph with vertex set VI and edge set ET.
¢ Op(a,B) : the distance between a and 3.

 Ti(e) = {B € VT|3r (2, 8) = i}, T(a) =T (a).

¢ kp(a) = k(a) := |I'(a)] : the valency at a.

¢ dr(a) = d(a) = max{dr(a, B)|B € VT} : the local diameter at a.

e For a, B € VT with 8(a, ) =1, let

C(a,f) = Ci(a,f) = Ti.i(a)nT(P)
A(a,f) = Ai(a,f) = Ti(a)nT(B)
B(a,f) = Bi(a,8) = Tipi(a)NT(B).
To(u) Ty (u) Ci_1(u) Ti(u) iz (u) Ta(u)

/[ \

~ >
(b

We use lower case letters for the cardinalities of these sets.

¢i(e B) = ICi(@, B)|, bi(ex, B) = |Bi(a, B\, ai(ex, B) = | As(e, B)I.
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2 ABSOLUTE CONSTANT BOUND CONJECTURE 2

Definition 1.1 A connected graph I' = (VT, ET) is a distance-regular graph (DRG) if the
numbers ¢; = ¢;(a, B), and b; = b;(c, B) depend only on i for each i.

Example 1 1. n-gons. A DRG of valency 2 is nothing but an ordinary polygon. We always
assume the valency is at least 3 in the following.

2. Strongly regular graphs. A strongly regular graph is a DRG of diameter 2.
3. J(v,d), the Johnson graphs. Let X be a set with |[X]|=v.

VI = (f), (,f)€ ET & |anP|=d - 1.

4. H(d,q), the Hamming graphs. Let Q be a set with |Q| = g.
VP =Q", (aB)€ET @ |{iloi £ 6} = 1.

$. Dual polar graphs. Let V be a vector space over a finite field with a non-degenerate
(quadratic, simplectic or hermitian) form. Let VT be the set of maximal totally isotropic
subspaces of V. Let d be the dimension of the maximal totally isotropic subspaces of V
in VI. For a, 8 € VT, define the adjacency by the condition dim(anN ) =d - 1. Then
this graph becomes a DRG with diameter d.

6. Hery(r), the Hermitian forms graphs. Let V = V(d, r?) be a d-dimensional vector space
over a finite field GF(r?) with r? elements. Let VT be the set of all Hermitian forms on
V. Then VT can be regarded as the set of Hermitian matrices over GF(r?) (i.e., a7 = &,
where the bar denotes the image of the involutive Frobenius automorphism). Two forms
J. g € VT are defined to be adjacent if rank(f — g) = 1. Then this graph is a DRG and is
called a Hermitian forms graph.

2 Absolute Constant Bound Conjecture

2.1 Bannai-Ito Conjecture and Related Problems

Conjecture 2.1 (Bannai-Ito [1]) There are only finitely many DRGs with fized valency k.

For a connected regular graph I' = (VT, ET) of valency k and diameter d, it is easy to
see that the size of T, i.e., the cardinality of VT, is bounded by a function of k¥ and d, say
[VT| < 3(k — 1)9. Hence the conjecture above says that the diameter of 2 DRG can be bounded

if the valency is fixed.
The following lemma is easily verified.

Lemma 2.1 LetT be a DRG.

(1) For a, B € VT with (e, B) = i, the numbers p}; = |T';(a) NTy(B)| do not depend on the
choices of a and B. In particular, k; := p?; = |Ti()|, k = k, = k(a), and d = d(T) := d(a)
do not depend on the choice of a.

@i=afa - -Lcgkk=b>bh2-2b-y21andk=ci+a;+b. In
particular,
k=22b—-c;2b3—c32:--2bgy —cay 2 —(k-2).
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2 ABSOLUTE CONSTANT BOUND CONJECTURE 3

The following is called the intersection array of I' and denoted by ¢(T').

c; # 1 oo 1 €& oo & i o e cd
a; = 0a - aa - a «-a" . a . aq
b; E b . by .o ¥ o M o W .

i(c,a,b) = |{i|(ci, 8:, b5) = (¢, a,8) Y}, r = r(T) = ey, a1, 1)

The number r(T") is a key, which is about the half of the geometric girth. (We will define
the geometric girth later.)

Apart from the fiest and the last columns there are at most 2k — 3 different columns in ¢(I)
by Lemma 2.1 (2). The following theorem gives a start point of what it follows.

Theorem 2.2 (A.A.Ivanov [25]) LetT be a DRG. Then the Jollowing hold.

(cnan ba) "/" (ca+lpal+hbl+l) = l(cl+lpaa+lpbl+l) <s+1l.
Moreover, d(T) < 225~4(r(T") + 1).

The theorem above asserts that the size is bounded by a function of k and r(T') if I' is a
DRG. In other words, there are only finitely many DRGs with fixed valency & and fixed r(I).

Using the results above, E. Bannai and T. Ito obtained many results concerning Conjec-
ture 2.1 in 80s, using so-called eigenvalue techniques which uses the integrality condition of
multiplicities of eigenvalues of graphs. See [2, 3, 4, 5]

Conjecture 2.2 (A.V.Ivanov [26]) (1) {(c,a,0) < r(T)+ 1.
(2) d(T) < 2k - 2)(r +1).

It is easy to see that (2) follows from (1). A.V.Ivanov proved (1) in various cases, The
following result is essentially due to P. Terwilliger [31].

Theorem 2.3 LetT be ¢ DRG withr =r(T') 2 2. If ¢o41 > 1, then b; > biyr, and ¢; < ciy,
Joranyi=0,1,...,d - r. In particular, {(c,e,b) < r(T).

A. Hiraki and J. Koolen proved that d(I') is bounded by C - k%.r. See an article of Hiraki
in this proceedings. Combining other deep results of Hiraki, it is easy to see that d(T") can now
be bounded by C - k% - r with one very special remaining case. But there seems to be some gap
to have a linear bound yet.

2.2 Absolute Constant Bound Conjecture

In view of Theorem 2.2, or the result of Hiraki and Koolen above, it suffices to give an upper
bound of r(I') by a function of the valency & in order to prove Conjecture 2.1. However, for
all known examples r(T') < 5. If T is primitive and d(I') > r(F') + 1 then r(I') < 2 with only
one exception, i.e., the Biggs-Smith Graph of valency 3. Note that the colinearity graph of a
generalized polygon satisfies d(I') = r(T') + 1. So it is natural to expect much stronger bound
for this r(I'), the absolute constant bound of the geometric girth of T

Conjecture 2.3 There is a constant R such that r(I') < R for all DRGs T.
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3 INCIDENCE GRAPHS 4

We strongly believe that this is the right conjecture to investigate. If we could have a
reasonably small bound R, we may be able to proceed to the classification of DRGs.

To close this section, we make two remarks. It is now a classical result that there are only
finitely many distance-transitive graphs with a fixed valency, i.e., Bannai-Ito conjecture holds if
T is distance-transitive [33]. But even we assume the distance-transitivity, the absolute constant
bound conjecture above is still open. Distance-regular graphs with Q-polynomial property are
well studied by P. Terwilliger and his students. These graphs satisfy r(I') < 2, and the only
such graphs with ¢; = 1 of diameter at Ieast 3 are either bipartite or generalized Hexagons of

order (g,4°).

3 Incidence Graphs

3.1 Distance-Regular Graphs of Order (s,t) and its Incidence Graph

If #(T') 2 2, ¢ = 1 and there is no induced subgraph isomorphic to I(2,1;. So every edge is
contained in a unique maximal clique of size ay + 2. Thus I'(a) ~ (¢ + 1) - K,, where s = a; +1
and t +1 = k/s. In this case, we can define geometric girth gg(I'), which is the length of a
shortest circuit without any triangles. Let r = r(I'). Then gg9(I') = 2r+2if ¢;4y > 1 and
g9(T) = 2r + 3 if ¢;41 = 1. This is actually the girth of the collinearity graph of the partial
linear space with the point set VT and the set of all maximal cliques as the set of (singular) lines.
Taking this connection to a geometric structure in mind, we define the following terminologies.

Definition 3.1 A DRG T is said to be of order (s,t), if I'(a) = (¢ + 1) - K, for every vertex
a € VT. The incidence graph T' of a DRG T of order (s, t) is a bipartite graph with a bipartition
VI = PUL with P = VT, L = LT := the set of maximal cliques (of size s + 1), where the
adjacency o~ z is defined by a € x when a € P, z € L.

A triangle-free DRG, i.e., a DRG with a; = 0 is of order (1,k — 1). The Hamming graph
H(d, f) is a DRG of order (s,t) = (g — 1,d — 1). The dual polar graphs are of order (s,t) =
(e, ) — 1) for suitable e depending on each underlying space. So in these cases t is closely
rela.t.ed to the dimension of the underlying space. Hence the first subproblem to consider the
absolute bound conjecture is the following.

Problem 1 Is there a constant R(t) depending only on ¢ such that r(T') £ R(t) for all DRGs T’
of order (s,¢)? Are there only finitely many DRGs T' of order (s, ¢t) for a fixed ¢?
3.2 Distance-Regular Graphs of Order (s,t) with small ¢

When a; =5~1=0, ¢t =k — 1. As for Problem 1, R(1) is known to be 5 ([8, Theorem 4.2.16,
Proposition 4.3.4]), and R(2) is as follows. Note that DRGs of order (1, 2) are nothing but cubic
DRGs. For the references see [24, 6, 3, 23, 35}, also [29].

Theorem 3.1 Let T be a DRG of order (8,2). Then one of the following holds.
(1) s=1 and T is isomorphic to one of the 13 cubic DRGs.
(2) s=2 and T is isomorphic to one of the 5 DRGs.
(3) s>2andd(T') < r+2(<41).
(4) s > 2 and the incidence graph [ is DBR.
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3 INCIDENCE GRAPHS 5

Hence except the case (4), R(2) is bounded.

As for the case t = 3, not much is known. The DRGs of order (1,3) is the one with valency
4. In late 80's Bannai and Ito proved that the diameter of DRGs of valency 4 is bounded, but
the complete classification was not finished at that time.

Recently, A.E.Brouwer and J. Koolen have succeeded in completing the classification of
DRGs of valency 4 by use of computer by showing that all these graphs are among 17 known
DRGs. They also used some improvements of the arguments of Bannai and Ito. J. Koolen is
now improving Bannai-lto’s arguments on the multiplicities of eigenvalues of DRGs with fixed
valency and obtained several good results. See the article of J. Koolen in this proceedings.

From the experience of the study above, we make the following remarks.
e There are four different cases.

1. s=1,i.e., a) = 0. (The case that singular lines are thin.) Many exceptional cases.
2. s < t, difficult but much easier than the case s = 1.

3. s =t, the bipartite half of bipartite DRGs appear.

4. s>, the induced graphs C(z,y), A(z,y) and B(x,y) have extra regularity.

e Technical matter.

1. ‘Circuit Chasing’ argument, which is similar to the ‘fusion argument’ in finite group theory
is very useful. (But it is still an argument or technique.)

2. The study of the structure of incidence graph and its regularity is essential.
3. If the diameter d(I") is not large relative to r(I'), the bound we obtain by eigenvalue
technique becomes very small.
3.3 WDSRGs, DSRGs, DBRGs and RNPs

We first discuss the regularity of incidence graphs. For the references of the results in this
subsection, see [29].

Definition 3.2 A connected bipartite graph f_‘ with a bipartition PU L is said to be distance-
semiregular (DSR) (on P) if & = ci(a, B) and b; = bi(a, B) do not depend on « and § provided
a€ Pand B € VI'= PUL, and it is distance-biregular (DBR), if it is DSR on both P and L.

Definition 8.3 A connected bipartite graph [* with a bipartition P U L is said to be weakly
distance-semiregular (WDSR) (on P), if the following condition is satisfied:

(1) It is biregular, i.e., bg(a, @) depends only on the part a belongs to.
(2) & = ¢i(e, B) does not depend on & and B provided o € P and either 8 € P or b;(a, 8) # 0.

RNP
DBR

The incidence graph of a regular near polygon (RNP) is nothing but a DSRG with &5y =1
for every ¢. The incidence graph of a RNP is DBR only if it is bipartite distance-regular.

= DSR = WDSR.
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3 INCIDENCE GRAPHS 6

Lemma 3.2 Let T be a DRG of order (s,t) and let T be its incidence graph. Let a, f be vertices
of T' at distance i. Let ¢;’s be the paramelers of I'.

(1) T is WDSR if and only if Ci(a, B) is a disjoint union of &; cliques of equal size for every
i.

(2) T is DSR if and only if T' is WDSR and there is no mazimal clique that is completely
contained in I';(a) for some a and i.

(3) T is the incidence graph of a RNP if and only if [' is WDSR and that Ci(e, ) is a clique
(i.e., the induced graph has no edge) for every i.

Example 2 H(d,q)is a DRG of order (¢ — 1,d - 1) and the parameters of the incidence graph
can be given as follows. Here o, 8 € VT and z, € LT.

Gi-t(az) Gi(anB) [ _ [ 1 J &i-1(z,a) Gi(zy) | _ | i-1 l,q
bai—1(a,z) boi(a,B) | | g1 d=i |’ | bsioa(z @) boi(z,y) |~ | d=i+1 ¢-1,0

Hence the incidence graph is DSR and the incidence graph of a RNP on VT but it is not DSR
on LI

Problem 2 Find the condition for the vertex-clique incidence graph I' of a DRG T of order
(s,t) to be DBR, DSR, or WDSR. Is the incidence graph of a DRG of order (s, t) always WDSR?

In most known examples with s > 1, I* is either DBR or the incidence graph of a RNP,
in particular, it is DSR. The hermitian forms graphs are the only examples with unbounded
diameter such that [ is not DSR, but it is WDSR. Note that if s =1, ' is always WDSR but
itisDSRonlyifa; =-+-=aq_; =0.

Theorem 8.3 Let ' be a DRG of order (s,t) and let T' be its incidence graph. Then every
eigenvalue of T' is at least —t — 1. IfT has an eigenvalue —t ~ 1, then T is a DSRG with dj(a)
even for every « € P. Moreover, if s > t, T always has an eigenvalue —t — 1.

The following theorem is obtained by an application of a result of Haemers.

Theorem 3.4 Let ' be a DRG of order (s,t) of diameter d = d(T') > 1, and [ be the incidence
graph of T'. For each vertez o € VT, let

&(e) T ci(@B), bile) = —— 3 bi(aB).

1
IPJ (O')I ﬂEf‘,’(a) II‘J(O)I ﬂEf‘j(O)

If, Jor each vertez @ € VT and 1 < i < d, ¢; = &xi-1()éi(a), and b;—; = bai—a(a)bsi_1(a),
then T’ is DSR.

Problem 3 Consider conjectures and problems when the vertex-clique incidence graph I is
DSR, DBR or the incidence graph of a RNP.

Proposition 8.6 Let ' e a DRG of order (s,t). Suppose that the incidence graph ' of T is
DSR, then
l(c,a,b) < r+1, and d(T) < t(r+1).

Compare with Theorem 2.2.
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4 SUBGRAPH THEOREMS AND CIRCUIT CHASING TECHNIQUE 7

4 Subgraph Theorems and Circuit Chasing Technique

4.1 Strongly Closed Subgraphs and Geodetically Closed Subgraphs
Let S(z,y) = {y}UC(z,y) U A(z,y).
Definition 4.1 Let Y be a subset of VT

1. Y is said to be geodetically closed if Y satisfies one of the following equivalent conditions.

(a) C(z,y)C Y forall z,ye Y.
(b) {z]8(z,2)+8(z,y)=8(z,y)} CY forall z,ye Y.

2. Y is said to be strongly closed if Y satisfies one of the following equivalent conditions.

(a) S(z,y)={y}uC(z,y)V A(z,y)CY forallz,y €Y.
(b) {z]|8(z,2)+8(z,y) < 8(z,y)+1}CY forall z,y €Y.

3. The (vertex) induced subgraph on Y is said to be a geodetically closed subgraph [or
strongly closed subgraph] if Y is geodetically closed [or strongly closed respectively].

Clearly, a strongly closed subgraph is geodetically closed. Most of the known DRGs have
geodetically closed subgraphs and many have strongly closed subgraphs. For example in the
case of dual polar graphs, strongly closed subgraphs correspond to the subspaces. So if we can
show the existence of these subgraphs, the structure is very much restricted. Moreover, if it has
a sequence of subgraphs, we have chance to construct geometry. Most of the strongly closed
subgraphs in DRGs are distance-regular, but there are some exceptions [28}.

Recently, C-W Weng [34), A. Hiraki [19] and the author [30] constructed a sequence of
subgraphs if #(I') = 1 and I" does not have a certain configuration called parallelogram. But
there is still a gap to construct geometry for classification.

In the next subsection we focus on the construction of a subgraph to bound r(I').

4.2 Hiraki’s Results on the Existence of Subgraphs

A DRG T with d(I') = r(T') + 1 is said to be a generalized Moore graph. It is known that
the diameter of a generalized Moore graph is at most 13 by the results of Fuglister and others
[8, 10, 11]. So if we can construct a subgraph isomorphic to a generalized Moore graph, then we
have a bound of r(I'). The following results of A. Hiraki are in this direction. See also [27].

Definition 4.2 Let I' be a DRG with r = r(I').
1. A four vertex configuration (z, z; 2/, 2) is said to be a root if
O(z,2)=8(z', ') =r+1, 2’ € $(2,2), &’ € S(z,2).
2. A three vertex configuration (z,y; z) is said to be a conron if there are sequences of vertices
(zo,Z1y ..y Z¢), (YOu W14 .-, 4e) and (29, 21,.. ., 2) satisfying the following:

(2) z=1z0,y = y0,2= 20 and 8(z(, ;) < 1.
(b) (=i, zi; Tit1, zig1) and (¥i, 2i; Yig1, Yi41) areroots for i = 0,1,...,6 = 1.

3. T is said to satisfy CR condition if for every conron (z,y; z), we have S(z, z) = S(y, z).
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4 SUBGRAPH THEOREMS AND CIRCUIT CHASING TECHNIQUE 8

Observe that if € z,z *» denotes the smallest strongly closed subgraph containing the
vertices z,z, then € z,2 »>=<« z',2 » for every root (z,z;z',z"). Hence by induction, it is
easy to see that € r,z >=<« z,y > [or every conron (z,y; z). In particular, if the diameter of
& z,z» is r + 1, then CR condition S(z,z) = S(y, z) must be satisfied. The first interesting
result of A. Hiraki states that this CR condition is also sufficient.

Theorem 4.1 ([21]) Let ' be a DRG of order (s,t) with r = r(T'). Then the following are
equivalent.

(i) T satisfies CR condition.

(#1) For vertices z,y € VT with 8(z,y) = r+1, there is a strongly closed subgraph A containing
z,y of diameler r + 1, and A is DR.

This theorem is very helpful when we define 2 candidate of a strongly closed subgraph
containing the vertices z, z of distance r + 1. It is not difficult to see that the strongly closed
subgraph A containing z, z has the following shape.

VA = {u]8(z,1) +8(u,y) =r +1, y € &},

where ® is a union of some connected components of I'.4)(z). If I satisfies the CR condition,
we see by investigation that
® = {y| (v, z; ) is a conron}.

Hence in order to construct a strongly closed subgraph, the step is to show the CR condition.
Hiraki showed this condition in various cases by circuit chasing technique, assuming the para-
metrical conditions for ¢;’s and &;'s for t's up to 2r + 1 or 2r + 2. The following are the some of
his results.

Corollary 4.2 ([17, 18, 21]) LetT be a DRG with r = r(T). If car41 = 1, then there ezists a
collinearity graph of a Moore geomelry of valency a,4, + 1 and diameter r+ 1 as a subgraph of
I'. In particular, eitherr=1o0ray=a,4; —1=0.

Corollary 4.3 ([20, 21]) LetI' be a point graph of a RNP withr=r(I'). Ifd>2.-r+1 and
ay > 0, then there ezists a strongly closed subgraph, which is a generalized polygon of diameter
r+ 1. In particular, r < 3. )

Thus the above corollary show that if I is a point graph of 2 RNP with r = r(I') of order
(s,t), then one of the following holds.

1. r<3.
2.8s=1,le,a, =0.
3.d<2-r().

Hence if we restrict our attention to RNPs with s > 1, then we may assume d < 2.r(T') to
prove the absolute constant bound conjecture.

A. Hiraki also treated the case when the diameter of the subgraph is larger than r + 1 in
[22].

Can we generalize Hiraki's result to geodetically closed subgraphs containing A(z,y) for all
edge z ~ y?

Interpret Hiraki's result to subgraphs in the incidence graph to apply to wider class such as
DSRGs.
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5 ALGEBRAIC ARGUMENTS 9

Problem 4 Study the existence conditions of geodetically closed subgraphs of DRGs of order
(s,t). In particular, is it possible to construct such a subgraph by assuming the diameter is large
in compared with r(G), when the incidence graph of A is DSRG or WDSRG?

5 Algebraic Arguments

The following is a result of Feit-Higman, Bannai-Ito, Damerell, Fuglister and others. This class
contains, generalized polygons, the incidence graphs of Moore geometries. See [8].
Let T be a DRG of order (s,¢).

dlf)<rN+1=r() < 12.
Problem & Find a combinatorial proof of the above result.

It is possible to give a constant bound of r(I') when d(I') < r(T') +3. There is still some gap,
but the author believes that it is possible to prove the following:
If d(I') € r(I') + C, then r(T') is bounded by a function of C.

Problem 6 Let ' be a DRG with d(I') < C:r(I'). Give a bound of r(G) as a function of C.

For example if T" is a point graph of a RNP with s > 1, we need to consider the case C = 2.
So start with the case C = 2.

Problem 7 Let ' be a DRG with d(I') < 2. r(I'). Give an absolute bound of r(I').
In the following we propose some typical array to consider.
* 1 cos 1 1 4 v 4 4 ¢4
0 s-1 - 5~1 s+1 25s-3 --- 25-3 a aq ;,
Is 28 -+ 25 2(s-1) s-1 -+ s-1 b =

where (b,c4) = (s—1,6), or (s—2,9). These are the remaining cases of DRGs of order (s,2)
such that no bound of r(I') is known.

O T | c -+ ¢ k
0 0 .- 0 0 - 0 O
k k-1 «-- k=1 k—c¢c -+ k=c =

{1) E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
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ON THE PRIME GRAPH OF A FINITE SIMPLE GROUPS
AN APPLICATION OF THE METHOD OF
FEIT-THOMPSON-BENDER-GLAUBERMAN

MICHIO SUZUKI

Department of Mathematics
University of Illinois at Urbana-Champaign

Introduction The theorem alluded in the subtitle is the Odd Order Theorem
of Feit-Thompson [FT] which states that all finite groups of odd order are solvable.
For the remarkable proof, they invented a revolutionary new method which was
influential to the development of finite group theory in the last 30 odd years. Re-
cently, Bender and Glauberman [BG] has published a highly polished proof covering
the group theoretical portion of the proof of the Odd Order Theorem.

By design, their proof is by contradiction. From the start they work on the
hypothetical minimal simple group of odd order and study its properties. Thus,
all the wonderful intermediate results are properties of the hypothetical group and
hence they may be vacuous. One of the goals of this note is to show that this is
not so; their method do give positive results and all the intermediate results are
properties of some real groups.

We consider the prime graph I'(G) of a finite group G. This is the graph defined
as follows. The set of vertices of I'(G) is the set #(G) of the primes dividing the
order |G| of G. If p,q € n(G), we join p and ¢ by an edge in I'(G) if and only if
p # q and G has an element of order pg.

The classification of finite simple groups has several interesting consequences on
the prime graph of a finite group. The following is one of them.

Theorem A. Let A be a connected component of the prime graph I'(G) of a finite
group G and let @ be the set of primes in A. Assume that A # I'(G) and 2 ¢ w.
Then, A is a cligue.

Usually, we identify A with @ and abuse the terms saying @ is a connected
component of the graph I'(G). Theorem A has not been stated in literature in this
form. But, the works of Gruenberg and Kegel [GK] and Williams [W] together with
properties of Frobenius groups yield Theorem A. The classification of finite simple
groups is used in two separate places of its proof. The first is in the proof of the
following theorem.

Theorem B. Theorem A holds for a finite simple group.

The second use of the classification is to prove the following lemma.

Typeset by ApS-TEX
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2 MICHIO SUZUKI

Lemma. Let G be a finite simple group. Then, w(Out G) is contained in the
connected component of the prime graph I'(G) that includes the prime 2. ~

This is fairly easy to check because QutG for a simple group G is not too
complicated. The checking of Theorem B is more complex.

The purpose of this work is to show that the method of Feit, Thompson, Bender,
and Glauberman can be adapted to give a proof of Théorem B without using the
classification of finite simple groups.

Actually, Williams [W] has checked the following result for a finite simple group.

Theorem C. Let A be a connected component of the prime graph ['(G) of a finite
simple group G. Let w be the set of primes in A. Assume that A # T(G) and
2 ¢ w. Then, G contains a nilpotent Hall w-subgroup H that is isolated in G.

A subgroup H of any group G is called isolated in G if 1 # H # G and for every
element = € HY, we have
Ca(z) C H.

Theorem B is weaker than Theorem C which may be considered a local version of
the Odd Order Theorem. It would be nice if our method would be able to prove
Theorem C.

Originally, Gruenberg and Roggenkamp [GR] are led to study the prime graph, in
particular its connectivity, through their work on the decompaosition of the augmen-
tation ideal of the integral group ring of a finite group. Specifically they considered
the following three conditions on a finite group G.

(1) G has an isolated subgroup.

(2) The augmentation ideal decomposes as a right ZG-module.

(3) The prime graph I'(G) is not connected.

Gruenberg and Roggenkamp [GR] proved that (1) = (2) = (3). Using Theorem
C, Williams [W] was able to prove that (3) = (1). If @ is a connected component
of the prime graph I'(G) such that 2 ¢ w and w # I'(G), it is not necessarily true
that G has a Hall w-subgroup that is isolated.

1. The Beginning of the Proof Let G be a finite group and let w C #(G) be
the set of primes of a connected component A of the prime graph I'(G). Assume
‘that

w#n(G) and 2¢w.

These conditions and notation are used throughout this note. The starting point
of the proof is the following proposition.

Proposition 1. Let P be a nonidentity w-subgroup of G. If Ng(P) is of even
order, then G has an abelian Hall w-subgroup that is isolated in G.

Proof. Since 2 ¢ w, P is of odd order. By assumption, there is an element ¢ of

order 2 that normalizes P. Since @ is a connected component and 2 ¢ w@, the

element t acts regularly on P. This yields that
z*=z"! for z€P.

Thus, P is abelian. If z € P!, Cg(z) is a w-group and normalized by ¢. It follows
that A = Cg(z) is abelian and the element t inverts every element of A. If y € A,
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THE PRIME GRAPH OF A SIMPLE GROUP 3

the same argument proves that Cg(y) is abelian. Since A = Cg(z) C Cq(y), we
have Cg(y) = A. Therefore, A is an abelian subgroup that is isolated in G. It is
known that every isolated subgroup is a Hall subgroup. O

Therefore, to prove Theorem B, we may assume that every w-local subgroup
is of odd order. From now on we use the following notation and assumptions in
addition to the ones already stated.

Let G be a finite simple group. Let
M = {M | M is a maximal @-local subgroup of G},

define
MH)={MeM|HCM)}

for any subgroup H of G, and assume that every subgroup M € M is of odd order.

The set of subgroups M satisfies properties which are similar to the properties
of the set of all maximal subgroups of the hypothetical minimal simple group of
odd order studied by [FT] and [BG]. We remark that the situation considered here
does occur in real groups. For example, if p is a prime such that p = 3 (mod 4),
the alternating group A, satisfies the condition for @ = {p}.

2. The Local Analysis of M We can apply the method of Bender and
Glauberman to study the subgroups in M. The subgroups in M are of odd order;
hence, they are solvable by the Odd Order Theorem. By definition, M € M is a -
local subgroup. It follows that F(M), the Fitting subgroup of M, is a @-subgroup.
Let p € n(G) and let P € Syl,(M). If P is not cyclic, P contains an elementary
abelian p-subgroup A of order p®. Then, A normalizes N = Og(M) which is not
1. By a well-known proposition (Proposition 1.16 [BG]),

N =(Cn(z) |z € Al).

It follows that p € w. Thus, if M is not a to-group, M has a cyclic Sylow p-subgroup
for every p € (M) \ w, Thus, M € M is almost a w-subgroup. However, I call
‘attention to the following point. For M € M, the set ¢(M) of primes is defined in
[BG] as

o(M) = {p € n(M) | Ng(P) C M for some P € Syl (M)}
(p.70 [BG]). The important set in our case is
oo(M)=e(M)Nw
and the subgroup we should study is
Moy = Ogg(a)-

It is proved that M,, is a Hall oo(M)-subgroup of M.
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Proposition 2. All the statements of the sections 7-15 of [BG] holds with proper
changes in hypothesis and the conclusions.

The types of subgroups in M are defined as in pp.128-129 [BG] with the following
three changes.
(Iliv) should read: V # 1 and if V is a w-group, then

Ng(V) Z M.

(I1v) should read: Ng(A) C M for every nonidentity subgroup A of M’ such
that Cy(A) # 1.

(11liii) should read: V is an abelian @-group and Ng(V) C M.

Then, M € M is of type I, II, III, IV, or V. We have the following two theorems
which are the goal of the local analysis.

Theorem 1. Either every subgroup in M is of type I or all the following conditions
are lrue.
(1) G contains a cyclic subgroup W = W\ x W, with the property that Nog(Wo) =
W for every nonempty subsel Wy of W — {Wy, W3}, Also, Wi # 1 for
i=1,2.
(2) There are two subgroups S and T in M such that S and T are of type I,
HI, 1V, or V, SNT =W, S is not conjugate to T in G, and either S or T
(may be both) is of type II.
(3) Every M € M is either of type I or conjugate to S or T in G.

There are other conditions which S and T must satisfy. For each M € M, two
particular subsets A(M) and Ao(M) of M are defined (cf. p.124 and p.131 [BG]).
The notation MF for each M € M denotes the normal nilpotent Hall subgroup of
maximal order of M.

Theorem II. For a subgroup M € M, let X = A(M) or Ag(M), and let
D={zeX|Cq(z) £ M).
Then, D C M,,, |M(Cq(z)| =1 for all z € D, and the following conditions are
satisfied.
(Ti) Whenever two elements of X are conjugate in G, they are conjugate in M.
(Tii) If D is not empty, there are w-subgroups My, ... , M, in M of type I or 1]
such that with H; = (M.‘)p,
() (1H | Hj|)=1 for i#j,
(b) M, = H.'(MnM.') and MnNnH; =1,
(c) (1Hi. ICm(z)]) =1 forall ze€ X!, y
(d) Ao(M;) — H; is a nonempty Tl-set in G with normalizer M;, and
(e) if z € D, then there is a conjugate y of z in D and an indez i such that

Caly) = Cn,(v)Cm(y) € M;.

If y € D with Caly) C M;, then y € A(M;).
(Tiii) If some M; in (T'ii) has type I, then M is a w-group and is a Frobenious
group with cyclic Frobenius complement, and Mp is not a Tl-set in G.

3. Application of Character Theory We can study subgroups of M using
character theory as in [FT]. The following are the major steps.
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Proposition 3. There is no subgroup M € M of type V.
Proposition 4. Every subgroup M € M of type I is a Frobenius group.

This is very powerful. Suppose that M € M is not a Frobenius group. Then,
any supporting subgroup M; for M in Theorem II is of type I by (T'iii). Then,
Proposition 4 yields that M; is a Frobenius group. However, it is easy to see that
Ao(M;) = H; for a Frobenius group. This contradicts (T'ii)(d). Therefore, there is
no supporting subgroup. It follows that X is a TI-set in G. This gives a very tight
control on the imbedding of M that is not a Frobenius group. In particular, we
can study the subgroups in M which are of type II, III, or IV. Final result is the
following,.

Theorem III. Let G be a finite simple group with disconnected prime graph I'(G).
Let w be a connected component such that 2 ¢ @. Then, one of the following two
cases occurs.

(1) G contains a nilpotent Hall w-subgroup that is isolated in G.
(2) We have w = {p,q} for some primes p and q, and G has a self-normalizing

cyclic subgroup of order pq.

If the second case occurs, there are many more conditions the primes p and ¢
must satisfy. It may be possible to eliminate the case (2) without referring to the
classification of finite simple groups. In any case, Theorem III implies Theorem B.

Theorem IV. Let G be a finite simple group with disconnected prime graph IT'(G).
Let A be a connected component consisting of edd primes. Then, A is a clique.
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LAPLACIAN SPECTRUM,TREE NUMBERS AND
COMPLETELY REGULAR CODES OF GRAPHS

Yasuo Teranishi
Graduate School of Polymathematics
Nagoya University

Nagoya, 464-01, Japan

This article attempts to give an account of the recent
work of the author on the study of Laplacian spectrum of
graphs. A paper on the details of the results announced in

this article is in preparation.

Let G be an undirected simple graph. The Laplacian
matrix is L(G) = O(G) - A(G), where D(G) 1is the
diagonal matrix of vertex degrees and A(G) is the
adjacency matrix of G. An eigenvalue of L(G) 1is called
a Laplacian eigenvalue of G. We denote by ((G) the
number of spanning trees of G and call it the tree

number of G.

For a Laplacian eigenvalue 1, | /+ 0, let )tV ,}j<2),
...,i'*? be 1its algebraic conjugate over the rational
number field Q. Then the norm N(l) = 1)zt

is a positive integer.
Theorem 1. Let 1 be a Laplacian eigenvalue of a
connected graph G, If the multiplicity m(l) of 1 is

greater than 1, then N()) divides the tree number 1 (G).

For example, if } is a Laplacian eigenvalue of a tree
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T with m(l1) 2 2, then 1 ia a unit of the ring of
algebraic integers in the algebraic number field Q{1) .
In partiqular if | > 1 is an integer Laplacian

eigenvalue of T, then m(l) = 1 ([2] Theorem 2.1).

Proposition 1, Let T be a tree with an 2 2
vertices. Then T has at! least one positive Laplacian
eigenvalue with multiplicity 1. Moreover if T has only one
positive Laplacian eigenvalue with multiplicity 1 then T

is the star K, ,..,.

For two graphs G, = (V,,E;) and G = (V. ,E;) on disjoint sets
of vertices, their disjoint union is G, + G, = (V, v V., E, U E;)
A coalescence of G, and G, is a graph G,  G; obtained from

G, + G, by identifying a vertex of G, with a vertex of G,.

Proposition 2. Let G, and G, be graphs. If )1 is a Laplacian
eigenvalue of G, with multiplicity me,(1) > 1, thea 1 is e Laplacian
eigenvalue of G, G, with multiplicity at least mc, (1) - 1. Horeover

me, (1) > 1 and mc, (1) > ! then Moy, c2(1) 2 me (1) + Mgz (1) ~ 2.

A graph G is called Laplacian integral if the spectrum consists
entirely of integers. It follows from Proposition 2 that if a
coalescence G, G, of G, and G, is Laplacian integral then
non-simple Laplacian eigenvalues are all integers. In [1] Cvetkovic
showed that the set of connected adjacency integral regular graphs

with fixed valency is finite. This can be generalized as follows:

Theorem 2. !f a connected Laplacian integral graph with n

vertices has the largest Laplacian cigenvalue m then we have nim!.

For two graphs G, and G;, the join G,* G; is the graph
obtained from the disjoint union of G, and G, by adding all
edges v, v,, v, « V{(G,) and v, ¢ V(G;). Let G = G, * G.. Then

G is Laplacian integral if and only if G, and G, are Laplacian
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integral. A connected graph G is saied to be primitive or imprimitive
according as the complement G° is connected or not. In other words,
G is imprimitive if and only if G is the join of some graphs

G| and Gz.

Propositon 3. [f the naumber of vertices of a connected

Laplacian iategral graph G is a prime number then G s imprimitive.

Proposition 4, Let G be a connected Laplacian integral graph.
Then the second largest Laplacian eigenvalue 1, salisfies

1, < 2c(G).

Corollary ([2]). A tree T on n vertices is Laplacian integral

if and onty if T =K, . .

Proof. The distinct Laplacian eigenvalues of K, .-, is 0,1 and
n, and hence it is Laplacian integral. If T is Laplacian integral tree
then it follows from the proposition that 1, § 1. Then we see that the

diameter of T is at most 2, and hence T is a star.

By Corollary ol Proposition #, we know that if «(G) = |, then G

is imprimitive.

Theorem 3. There are only finitely many primitive Laplacian

integral graphs with fixed tree number.

Two graphs G, and G, are called Laplacian cospectral if they
have the same spectrum. For a non-empty proper subset V of the
vertex set V(G) of a graph G, let G* be the Seidel switching

of G with respect 1o V.

Proposition 5. Let G be a connected graph. If G and G* have

the same degree matrix, thea G and G* are Laplacian cospectiral

graphs.
A vertex partition 1« = (C,,....C,) of a graph G is called an
equitable partition if, for each i, the number c,, of edges
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between any vertex in C, and vertecies in C; does not depend on
the choice of vertex in C,. The quotient graph G/1 is the
digraph with vertices C¢,,...,C, and c¢,; arcs from C: to C(;.

The Laplacian matrix L(G/1) = (a: ;) of G/1 is defined by

“Cii ‘f ‘ / J
a.y =
(X Cie) - cov. if §F = §.
lslsl
Theorem 4, Let + = (C,....,C,) be an equitable partition of

a connected graph G with n vertices. Let 1,,...,1, be the distinct
positive eigenvalues of L(G/1). Then for each i, 1, -+ 1,IC,| is an

integer divisible by n.

A non-empty subset C of V(G) is called a code. For a code
C, let C; denote the set of vertices in ¢ at distance i from
C. It t = (Co ,...,C,) is an equitable partition then C is
called a completely regular code with covering radius (. For basic

theory of completely regular codes see [4].

Theorem S. Let G be a connected graph with n vertices and let

C be a completely regular code of G wilh intersection array
‘.(C)=(bu.....b| |,'C|,...,C.).

Let 1,,...,1, be the positive Laplacian eigenvalues of the quolie
graph G/1, where 1 is the distance partition of V(G) with respect tc
C. Then

ICll, -1, = nc, - €.

As an apllication we obtain the following result:

Proposition 6, If C is a completely regular code with

covering radius t, then
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(Zi.0lby + ¢, ))/t) 2 nev - ¢ /ICl, with co = b, = 0.

In partiqular,

(dQIAJ‘,C, 2 aCy - C|/e.

where duo.. denotes the maximal degree of vertices and e = lim

(1+1/m)".
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§1. Statement of the Theorems

In [Sei], G. Seitz determined the “chambertransitive” subgroups of the finite
Lie-type groups. This theorem was the basis of the (local) classification
of the locally finite, chamber transitive Tits-geometries and corresponding
parabolic systems. (See [Mei], [St,Ti].)

In [Til] we gave certain presentations for Chevalley-groups of type Ay, Dy
and E,. Except in case A, the proof succeeded by constructing from the
given presentation a parabolic system of type D, or E, and then using the
universal covering theorem of Tits [Tits2]. As a final step in the proof it
then remains to show that a certain chamber transitive subgroup of the
Chevalley-group is indeed the full Chevalley-group.

This shows that it would be desirable to extend Seitz’s theorem to arbitrary
“Lie-type” groups. Unfortunately such a complete determination of chamber
transitive subgroups does not seem to be possible, because of examples of

type:
sbn(m) B -S50,(R), SL(C) = B - SUL(C), SLn(Q) = B - SL.(Z),

where B is always a group of triangle matrices. But for the purpose of
parabolic ‘systems and presentations of Chevalley-groups a more technical
version of Seitz’ theorem, see theorem 1 below, suffices. To be able to express
this we need some notation:

A classical Moufang-polygon is the Moufang-polygon of some classical group
of Witt-index 2 or of some simple algebraic group of rank 2. (The facts we
need are probably true for all Moufang polygons. But we wish to avoid the
“classification” of these!)

If now B is an irreducible spherical building of rank > 3 or a classical Mo-
ufang polygon and G = Aut(B) (group of type preserving automorphisms)
then there are certain “unipotent” subgroups of G. These can be defined
completely in the terminology of buildings. Namely if ® is a root-system
connected with B,I = {ry,---,r¢} a fundamental system of & with corre-
sponding positive system &%, then the (full) unipotent subgroups of G are
the conjugates of

U= (U |re &%),

where U, is the root-group on B corresponding to the root r. (See Ronan
[Ro).) It follows from the classification of irreducible spherical buildings of
rank > 3 [Tits1] or from the Tits commutator relations [Tits3] that U is a
nilpotent subgroup of G. We call

= (UG) - the Lie-type group of type B.
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Except in certain well-known cases over GF(2)(Sp(4,2),G2(2),2 F4(2)!) G
is the uniquely determined simple normal subgroup of G. U is contained
in the stabilizer B of a chamber ¢ of B inside G. (This follows from the
definition of the U;! We consider B as a chambersystem, see [Tits2].) Let
P,,---, P be the minimal parabolic subgroups of G containing B, i. e. the
stabilizers of the rank 1 residues (cells) of B containing ¢ and

R; = (U%) i=1,---,8
Ui = NU% g€PR, i=1-- ¢
K; == NBY geP, i=1,--,¢L

Then we have in this terminology:

Theorem 1. '
Let B be an irreducible spherical building of rank > 3 or a classical Moufang-

polygon. Suppose there exists a subgroup L of G satisfying:
(#) RCKi(LNnP)fori=1,---¢
Then one of the following holds:
(1) GCL
(2) G = Sp(4,2),Ga(2) or Fy4(2) and L = Ag,G2(2)' or 2Fy(2)’
(3) G= L4(2) ~ Ag and L ~ A7.
Remark: Condition (%) implies that L is chamber-transitive on B. This

follows from the connectivity of the chambergraph and the fact that each
R; is transitive on the rank 1 residue of type ¢ containing c.

From Theorem 1 we obtain a classification of certain spherical Tits-chamber-
systems, i. e. chambersystems of type M, M a spherical Coxeter-matrix in
the notation of [Tits2]. Such a chambersystem is called classical if all rank
2 residues are classical Moufang-polygons of generalized digons. We have:

Theorem 2.
Let B be a classical Tits-chambersystem of spherical irreducible type A and
rank > 3. Fix a chamber ¢ of B and let G = Aut(B). Assume:

(+) If B;j is a rank 2 residue of B containing ¢, which is a Moufang polygon
and L;; = GPi (i.e. the group induced by G on B;;) then L;; satisfies
as a subgroup of Aut(B;;) condition (%) of Theorem 1.

Then either B is a building of type A or A = C3 and B is the A7 geometry.
Theorem 1 shows that either L;; contains the Lie-type group of type B;; or

L;j = Ag and B;; is the Sp(4,2)-quadrangle. (Since by hypothesis residues
which are hexagons or octogons do not occur!)

196



Asin Theorem 1 it is easy to see that (+) implies that L is chamber transitive
on B. (We assume that Tits chambersystems are connected.) So in some
sense Theorem 2 is a generalization of Theorem 3 of [Asch] resp. Theorem
3.1 of [Ti2] to the infinite case.

Although condition (+) (and (#)) look artificial, these are exactly the con-
ditions one obtains in context of parabolic systems. Here the system of
subgroups P = {P; | i € I}, I = {1,-++,€} of a group G is called a
parabolic system (with respect to G and B) if the following conditions hold:
(1) B:=NiesPi=PiNPcforall j# k€I
(2) G=(P:|i€I)and Bg =(\,egB = 1.
(3) Either
() Py := (P P)=PPj=P;P;, ot
(i) B;; = C(P,j, B,P;, P, is a classical Moufang polygon and PV =

P;;/Bi;, Bij = NB" h € P;, is a Lie-type group of type B;; or
Ag, G(2)! or 2Fy(2).

(For definition of C( ) see [Tits2].)

If now P = {P; | i € I} is such a parabolic system one can define the
diagram A(J) in the obvious way. Namely if ¢ 3 j € I, then i and j are not
connected in A(I) if (3)(i) holds, while if B;; is a m;j-gon then i and j are
connected by a bond of strength m;; — 2. We have:

Corollary 3.
Let P = {P; | i € I}, |I| > 3 be a parabolic system of G with irreducible
spherical diagram A(JI). Then one of the following holds:

(1) € =C(G, B, (P:)iei) is a building of type A(I) and G is an extension of
a Lie-type group of type C by diagonal automorphisms or A(I) = A,
and G = A7

(2) € =C(G, B, (P)ier) is the A7 chambersystem of type Cs and G = 4s.
Finally, using theorem 1 and 2, we obtain a uniform presentation for all
Chevalley-groups:

Theorem 4.
Let G=(X;|ieI),I={1,---,8},€> 2, satisfying:

(1) Each X; is a perfect central extension of PSLy(K), K a divisionring.

(2) In each X; there exists a full extension diagonal subgroup H; # 1
normalizing all X;,7 € I.
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(3) For X;; = (Xi, X)) # , one of the following holds:

(a) [Xi, Xjl=1or

(b) Xi; is a perfect central extension of PSL3(K), PSp(4,K) or
PQ(5,K). Further the unipotent subgroups of X; and X; are
mapped onto root subgroups of Xj;;, such that at least one root-
subgroup corresponds to a long root of the underlying root-system.

(4) The naturally defined diagram A = A(J) is spherical.

(5) If |K| = 4 then there exists a connected pair of nodes i,5 € I with
Xi;/Z(X;5) ~ PSL3(4) and |Z2(X;;)] < 12.

Then the following hold:

(I) Either G is a perfect central extension of PSL¢y) (K), K a divisionring
or K is a field and G is a perfect central extension of the adjoint
Chevalley-group of type A over K.

(II) If K is commutative and X; and X, are already factor groups of
SL4(K) for end nodes 1 and ¢ of A(I), then G is already a factor-
group of the universal Chevalley group of type A over K.

Here a diagonal subgroup H; of X; is the coimage of a diagonal subgroup
of PSL,(K). If A; is an Hiinvariant coimage of a unipotent subgroup of
PSLy(K), then A; = [A;, H{] is called a unipotent subgroup of X;. By
the comments in the introduction of [Ti1] A; is in any case an abelian H;-

invariant complement to Z(X;) in A4;.

The diagram A = A(I) is defined as follows: Two nodes i,5 € I are not
connected iff [X;, X;] = 1. They are connected by a bond of strength 1
iff X;;/Z(X;;) ~ PSLay(K) and by a bond of strength 2 iff X;;/Z(X;;) ~
PSp(4, K) or PQ(5, K).

A perfect central extension does not need to be perfect itself. It just means
that the centre is in the commutator subgroup. (I. e. SL(3)!). So condition
(1) also makes sense in case |K| < 3. On the other hand by condition (2)

(Hi #1) |K| # 2.

Of course the groups PSp(4, K) and PQ(5, K) are only defined over fields.
Thus if K is non-commutative we have A = A,,;, D, or E,, and the hypothesis
of Theorem 1 of [Til] is satisfied. So for the proof of Theorem 4 one may
assume that K is a field.

I do not know if the extra condition in case || = 4 is really necessary. But

if Xi;/Z(X;;) ~ PSL3(4) and 3 [ |Z(Xi; )|, then H; = Hj, a situation which
does not occur, since for example if we have a subdiagram
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1 2 3

O——O0—0  of type A3, this would imply H, = H; = Hj,
contradicting [X), H3] < [X), X3] = 1. So 3 divides | Z(X)2)| and |Z(X23)|-
If now |Z(X}3)| = 12 = |Z(X33)| I come to a very tight situation, which
in my opinion is likely to occur, although I am not able to construct an
example.

The problem in the proof of theorem 4 is to construct a “universal” group
satisfying the conditions of theorem 4. To do this, we construct a parabolic
system of type A(I). Then the universal group is given by the univer-
sal covering of the corresponding Tits-chambersystem, see Corollary 3 and
Theorem 2.

One could also think of taking for this universal group the “amalgamated
product of the X;; amalgamated along the X; ”. But I do not know how to
make this notion precise.

Moreover, I believe that the existence of this universal group depends on the
fact that A(J) is spherical. (Which in my proof comes in via Weyl-groups
and root-systems.) _ _

Namely if A(I) is affine of type A,, D, or E, it was shown in [Til] that
Chevalley-groups of type A;, D, or E, over the ring K[t,t™!] of Laurent-
polynomials provide examples of type A(I) over I{. Moreover it can be
shown that Kac-Moody groups of type A(I) over I provide further exam-
ples. And I do not believe that all these examples come from the same
universal group.

One final comment on theorem 4. Theorem 1 and 2 and Corollary 3 suggest
the possibility of a more general theorem, which gives a uniform presentation
of all “Lie-type groups” of rank > 3. And indeed over finite fields I do know
what the formulation of this theorem and (hopefully) the proof should look
like. But in general there are certain fundamental questions which have to
be answered:

(1) What is the definition of the X; ?
(All classical groups of Witt-index 1 over some division-ring are can-
ditates.)

(2) How can the commutator relations on the root subgroups of X;; =
Xi;/Z(X;;) be lifted to X;;. (X; is a rank 2 Lie-type group.)
If X;; is a Chevalley-group one uses for this, as in Steinberg’s work
on central extensions of Chevalley-groups, the action of H; and H; on
the root subgroups.

(8) How to construct the Moufang-polygon of X;; from the fact that the
“unipotent subgroups ” of X; and X; are mapped onto root-subgroups
of f.-j?
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§2. Some comments on Proofs

The proof of theorem 1 depends on the following proposition, which states
some properties of all Lie-type groups, which are not defined over GF(2).

(2.1) Proposition.

Let G be a Lie-type group in the sense of theorem 1 of rank > 2, which is not
defined over GF(2). (l. e. there is some root-subgroup U, with |U,| > 2!)
Let & be a root system of G with fundamental system IT = {ry,---,r¢} and
positive system ®*. Then in the notation of theorem 1 the following hold:

(1) U=(U,,,:+,Us,). Further all root-subgroups corresponding to com-
pound root of $t are contained in U’.

(2) For r € &% let X, = (U,,U_;),H, = Nx,(U:) " Nx,(U-;) and H =
(H, | r € ®*). Then for appropriate end nodes r; and r¢ of II, there
exists a subgroup H® of H with [U,,, H°] =1 and [U,,, H = U,,.

It is obvious that both properties are false over GF (2). (2) holds for appro-
priate enumeration of II. The proof of (2.1) is by induction on £ = rank G,
where only the rank 2 case is difficult. Condition (1) depends on (element-
wise) commutator relations of the root elements corresponding to roots
r € &+, For Moufang planes such relations are wellknown. For Moufang
quadrangles corresponding to classical groups they are contained in Van
Maldeghem’s forthcomming book on generalized polygons. For Moufang
hexagons they can be obtained from my (yet unpublished) work on Mou-
fang hexagons.

For Moufang quadrangles corresponding to exceptional algebraic groups (1)
follows from commutator relations given by T'its, for which I do not know
any proof. But on the other hand theorem 2 and 4 and Corollary 3 are
about groups of rank > 3 and all parabolic subgroups of rank 2 in these cor-
respond either to Moufang planes or to Moufang quadrangles corresponding
to classical groups of Witt-index 2. So if one wants to restrict oneself on the
rank > 3 case, one does not need proposition (2.1) for Moufang hexagons
and Moufang quadrangles of exceptional algebraic groups.

(2.1) (1) is used heavily in Seitz’s paper. (See (1.4) of [Sei].) But strangely
he only states it for Chevalley groups not of type B,(2%), Fy(2F), Ga(q),
3D4(q) or 2F4(g), which then is responsible for (unnecessary) complications
in the proof.

Now for the proof of theorem 1 one quotes [Sei] for the GF(2)-case. In
the other case one shows, using (2.1), induction on ¢ = rankG and some
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commutator arguments, that U C L. If now g € G, theng=b-I,be B,l € L
by flag-transitivity of L. Hence

v=0=U'<L
and thus G = (U? | g€ G) < L.

(2.2) Theorem 2.

The proof of theorem 2 and Corollary 3 depends on the universal covering
theorem of [Tits2], which says that the universal 2-cover 7 : € = C of a
Tits-chambersystem C is a building, iff all rank 3 residues of C are covered
by buildings.

Let now C be as in theorem 2 or, under the hypothesis of Corollary 3 let
C = C(G, B, (P)ier) in the notation of [Tits2] and assume that all rank3
residues of C are covered by buildings. Then our group G is lifted to some
G C Aut(C), i. e. there is a surjective homomorphism

c:G=G.

Now one can show that condition (+) of theorem 2 is also lifted to G,
that is G satisfies as a subgroup of the automorphism group of the spherical
building € condition (#) of theorem 1. Hence by theorem 1 F*(G) is simple.
Thus Kerno = {1} and ¢ and whence 7 are isomorphisms, which proves
theorem 2.

So the proof of theorem 2 reduces to showing that all rank 3 residues of
C are covered by buildings. To do this one may assume rankC = 3 and C
is of type A3 or C3. Now there is some real work to do, since there is the
additional example of the A7-geometry. First we show as in (3.1) of [Ti2]
that the geometry I'(C) is also of type A3 or C3. If now I'(C) is of type As,
then I['(C) is a projective 3-space. So we may assume I'(C) is of type Cj.

Now we argue similar as in [Asch], that is we try to show that either I'(C)
is the A7-geometry or I'(C) is a partial linear space. In the latter case it
follows from (6.2.4.2) in [Tits2] that then I'(C) is a rank 3 polar space.

The arguments in detail are similar as in [Asch]. We use theorem 1 to obtain
that on the rank 2 residues of I'(C) of type A; and C; rank 2 Lie-type groups
are induced. Here the hypothesis that C is classical is essential. Now one
uses detailed properties of these rank 2 Lie-type groups and of their action
on the projective plane resp. generalized quadrangle to show that either
I’(C) is a partial linear space or I'(C) is defined over GF(2). (I. e. the
residues of I'(C) are of type L3(2) resp. Sp(4,2).) For the GF(2)-case we
quote theorem 1 of [Asch].
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The crucial lemma for the proof of theorem 4 is:

(2.3) Lemma. Suppose that for X;; = X;;/Z;;, Z;; = Z(X;;) case (3)(b) of
theorem 4 holds. Let H;; = (H;, H;). Then the following hold:

(1) There exists a system {A, | r € &}, ® a root-system of type A; or By,
of H;;-invariant conjugates of A; und A; satisfying:

(a) X, = (A, A_,) is a perfect central extension of PSLy(K) and
Ar, A_, are Hjj-invariant unipotent subgroups of X,.

(b) Er,s€®, s#xrand r+s ¢, then [4, 4] =1.

(c) I & is of type A2,r,s € ® with r + s € &, then [A;,4,] = A,4,

(d) If & is of type B2,r,s both short with r + s € @, then [4,, 4,] <
Ar4s. Further [A,, A(] = Arq, if Chark # 2.

(e) If r is short, s is long and r + 5,2r + s € &, then [4,,A,] =
Ar+cA2r+c~

(2) Let we € Nx,(H;;) interchanging A, and A_¢ with w} € H;j;€=1i or
j. Then W;; = (w;, w;)H;;j/H;;j is dihedral of order 6 or 8 and acts as
W(Az) or W(B3) on {A, | r € &}.

In the proof of (2.3) one first shows that (2.3) holds for X; ij. That is, there
exists an H;;-invariant set {4, | r € $} of conjugates of 4;, A, satisfying all
the conditions of (2.3). This follows from the condition that A; and A; are
both root-subgroups of X;;, which do not both correspond to short roots.
After that one lifts all these commutator relations to X;;, using the action of
H;; on the root-subgroups. This type of argument is similar to Steinberg’s
argument in his wellknown work on central extensions of Chevalley groups.

Now this generic argument only works in case |K| # 4, since if |[K| = 4
one has H; = H; ~ Z3. Thus in case |[K| = 4 one needs to embed X;;
into a larger group (of type Az or B3) and show that, thanks to the extra
condition in case |[K| = 4 in theorem 4, PGL3 (4) is induced on X;; in this
larger group.

Nowlet H = (H; |i€ I))N=(w;|i € I)H and W = N/H. Then one
shows next:

(2.4) The following hold:
(1) W W(A())

(2) The permutation action of W on the conjugates of the w;,i € I is
equivalent to the permutation action of W on the conjugates of the
Xi,t € I under W.
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From (2.3) (2) it is clear that the w; satisfy the relations of the fundamental
reflections of W(A(I)). So the proof of (1) essentially reduces to showing
that W is no center factor group of W(A(I)). Here it is necessary to discuss
the different types of A(I).

For example if A(I) = D4y and W ~ W*(Dy), the center factor group of
W (Dy), then a product of four commuting reflections of W is 1. But on the
other hand one can show that these reflections come from the reflections of
a product of four commuting X,’s. Since such a product is mod the center
a direct product of four PSLy(K)’s, the product of the four reflections can
not be 1.

This type or argument succeeds in all cases and proves (1).

Now one takes the natural action of W on a root-system & of type A(I)
(here a careful distinction between B, and C;, which both correspond to
the same A(J) is necessary !) and extends this action on {4, | r € &}
using (2.3)(1) and (2.4)(2). Then one shows that for all pairs r,s € & the
same type of commutator relations as in (2.3)(1) are satisfied. Now let
U = (A, | r € ®*). Then it follows from the commutator-relations that U
is nilpotent. (The proof is the same as for Chevalley-groups!)

Let B = UH (H normalizes all A,,r € & by definition.) and P; =
(B, X;:),i€e I={1,---,¢}. Then the final aim is to show:

(2.5) {P;| i € I'} is a parabolic system of type A(I) of G.

Now with (2.5) theorem 4 is a consequence of Corollary 3.
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Group association scheme of PSL(2,7)

Masato TOMIYAMA *
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1 Introduction

An association scheme can be thought of as a combinatorial interpretation of transitive
permutation groups. It is one of the central concepts for those who attempt to study
combinatorial structure with high regularity, not relying on group theory. Since the
regularity of an association scheme is measured by its parameters (intersection numbers),
it is a natural problem to characterize (or classify) association schemes with a given set
of parameters. There are many contributions to this problem (e.g., [4] for the Hamming
schemes, [8],[13] for the Johnson schemes, [12] for the g-analogue Johnson schemes, (6] for
the dual polar schemes, [7], [5] for the forms schemes and so on), but almost all of them
concern P- (and Q-) polynomial schemes. '

A standard example of non-P- nor Q- polynomial association schemes can be con-
structed from each group G, which is called the group association scheme X(G) of G.
It is well known that X(G) is primitive if and only if G is simple, and that primitive
association schemes play an important role in commutative association schemes, similar
to the role simple groups play in finite groups. (See [2, section 11.9], [9},(10].) So in order
to study finite simple groups from the viewpoint of algebraic combinatorics, it would be
interesting and necessary to determine whether the group association scheme X(G) of a
given simple group G is characterized by its intersection numbers: however, this prob-
lem has been open even for the smallest non-abelian simple group As, the alternating
group of degree 5. (See [1].) In [14] the author showed that X(As) is characterized by
its intersection numbers. In this note, we treat G is the second smallest non-abelian sim-
ple group PSL(2,7), the 2-dimensional projective special linear group over the field of
oreder 7. We show that X(PSL(2,7)) is characterized by its intersection numbers. For
the other finite simple groups G, characterization problems of X(G) are still open.

*e-mail address: tomiyama@cc.osaka-kyolku.ac.jp
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We note that the character table of G determines the intersection numbers of X(G),
and vice versa. (See [2, Section I1.7].) Thus for group association schemes, the char-
acterization problem by their intersection numbers is reduced to a classical problem of
characterizing groups by their character tables (though the association schemes of two
non-isomorphic groups may be isomorphic). Here we can rely on many results in struc-
ture and representation theory of groups.

However, difficulties arises when we attempt to classify all association schemes (not
necessarily group association schemes) with the intersection numbers to those of a given
group association scheme. Because, the problem is now completely different in nature: we
are not allowed to rely on group theory, but are required purely combinatorial methods.
Further, the result is not always simple: there are exactly three non-isomorphic association
schemes with the intersection numbers identical to those of X(Ss) of the symmetric group
Sy of degree 4, among them X(S,) is the unique group association scheme. (See [14].)

Because of these difficulties, not 50 many results appeared about the classification of
association schemes with the parameters identical to those of the group association scheme
X(G) for a give group G: |14] for G = As, Sy and SL(2,5), and [15] for G = PSL(2,7).
They are individual groups, and the arguments heavily depend on each group.

In [16] and [17], N. Yamazaki and the author consider the above problem for an infinite
family of groups G = S,, the symmetric group of degree n, for every n. They characterize
X(S») by its parameters when n # 4.

2 Definitions and Main Theorem

Let X be a finite set and Ry, Ry, ..., R4 the relations on X, i.e., subsets of X x X. Then
X = (X, {Ri}ogicd) is a commutative association scheme of d classes on X if the following
conditions hold.
(1) Ro={(z,2)lz € X}.
(2) XxX=RURU---URs,and RiNR; =0ifi#j.
(3) For all £ € {0,1,...,d}, there exists i’ € {0,1,...,d} such that *R; = Ry, where
‘Ri = {(z.¥)(v,7) € Ri}.

(4) For all ¢,5,k € {0,1,...,d}, the number of z € X such that (z,z) € R; and
(z,4) € R, is a constant, pf;, whenever (z,y) € Rx.

(5) p%; = pf, for all 4, 5,k € {0,1,...,d).

‘The non-negative integers {p};}osijx<a are called the intersection numbers of X.
The reader is referred to [2] and (3] for the general theory of association schemes and
related terminology.
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Take any finite group G. Let Gy = {1},C4,...,Cu be the conjugacy classes of G.
Define the relations R; on G by R; = {(z,y)lyz"! € C;} for i = 0,1,...,d. Then
X(G) = (G, {Ri}ogicd) is & commutative association scheme of d classes on G called the
group association scheme of G. (See [2, Example 11.2.1(2)].)

The main theorem in this note is the following:

Theorem 2.1 The group assoctation scheme X(PSL(2,7)) is characterized by its inter-
section numbers, where PSL(2,7) is the 2-dimensional projective special linear group over
the field of order 7.

The i* adjacency matriz A; of X is defined to be the matrix of degree | X| whose rows
and columns are indexed by the elements of X and whose (z,y) entries are

(As)ey = { 1 if (z,y9) € Ri,

0 otherwise.
The ¢** intersection matriz B; of X is defined to be the matrix of degree d + 1 whose
(5, k) entries are
(B:)sx = plj-
The intersection numbers of the group association scheme X(G) can be obtained from
the following formula:

x _ GG () (u)x (o))

Pi; = '
’ Gl sefmia x(1)

where Jrr(G) is the set of all irreducible characters of G, and v is the representative of
Ci. (See [2, Section I1.7).)

To calculate the intersection numbers of X(PSL(2, 7)), we order the conjugacy classes
of PSL(2,7) as [ollows:

Co Cl C2
.o 10 11 1 -1
representative : (0 ] ) Z (0 1 ) Z (0 1 ) Z
order of representative : 1 7 7
'C.| : 1 24 24
CS C4 Cs
oo 0 1 2 =2 20
representative : (_1 0) VA (2 9 ) Z (0 4) Z
order of representative : 2 4 3
IC,I . 21 42 56
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where Z = {((1) ?) , (';)1 _01)}.
Then the intersection matrices of X(PSL(2,7)) are as follows:

/1 00000 /O 1 0000
010000 0 1 980 3
001000 |24 1 108 3
Bo=1g 0010 0l Bi=|lg 0 70 4 3|
000010 0 14 0 8 4 6
\0 0 0 0 01 \0 7 7 8 89
/0 01 000 /0 00100
24 1 1 0 8 3 0 07043
B.-|0 91803 B 0 7004 3
2710 7 0 0 4 3]° 3% 1210 0 4 4 3]
0 0 14 8 4 6 0 77816
\0 7 7 8 8 9 \0 7 7 8 8 6
(00 0 0 1 0 /0 0 0 0 0 1
0 14 0 8 4 6 0 7 7 8 8 9
|0 o 14 8 4 6 0 7 7 8 8 9
B“077816'B"077886
2 7 7 2 16 12 0 14 14 16 16 12
\0 14 14 16 16 12 \56 21 21 16 16 19

In the following, we assume X = (X, { Ri}o<ics) is an association scheme having the
same intersection matrices as those of X(PSL(2,7)).

In general, it is well known that p‘,?j # 0if and only if j = i'. Hence, in our case, 1’ = 2,
2'=1and ¢ =1hold fori =0,3,4,5. Also'R, = R, 'R, = R, and *R; = R; hold for
1=0,3,4,5.

For any subset E of X, we define the graph (£, R;) as the graph with vertex sel E
and edge set (E x E) N R;. The graph (E, R;) is directed if i € {1,2} and undirected if
i € {0,3,4,5}.

To prove Theorem 2.1, we have to show that all relations R,, R,...,Rs of X are
uniquely determined by the intersection numbers. But it is enough to show the following:

Proposition 2.2 The directed graph (X, R,) i3 uniquely determined by the intersection
numbers.

First we prove our main theorem.

Proof of Theorem 2.1: By Proposition 2.2, the graph I' = (X, R)) is uniquely deter-
mined. So the relation R, is unique and so is the first adjacency matrix A;. Then we
have the other adjacency matrices of X by using the equation

5
Alz = thAk =0Ao+ 14, + 942 + 8A3 + 04, + 3A45.
k=0
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Namely, we determine them as follows:

R, = {(g, P)l(Alz)z.v =9} ="'R,
Ry {(=z, y)|(A12),.,, =8},
Ry {(=, !I)I(Alz)z.v =0,z #y},
Ry = {(=, y)l(Alz),,, =3}.

Thus all the relations of X are uniquely determined. a

We remark that the relation R, or R; = 'R, is essential. Suppose we can determine
the relations R, Ry and Rs. For i, j € {3,4, 5}, consider the equation

5
AAy = E PfjAh = P?,'Ao + P:!,'Al + P?jAz + P?jAa +pij A+ P?jAs-
=0

Since the intersection numbers satisfy
p:!j = Pf, for "nJ € {3a 4: 5}1

the coefficient of A; and that of A, are equal. Therefore we can not distinguish the
relations R, and R; from the other three relations Ry, ¢ and Rs.

The method to prove Proposition 2.2 is purely combinatorial, and the proof is very
long and complicated. (See (15].)
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VERTEX OF NON-PERIODIC MODULES IN THE
AUSLANDER~REITEN QUIVER OF FINITE GROUPS

KATsuHiRO UNO

Department of Mathematics, Osaka University,
Toyonaka, Osaka, 560 Japan

This is a joint work with Prof. T.Okuyama. Details will be found in [OU3]. Let
kG be the group algebra of a finite group G over a field & of characteristic p, where
p is a prime. The stable Auslander-Reiten quiver (AR quiver for short) of kG is a
directed graph whose vertices are isomorphism classes of non-projective indecom-
posable kG-modules and arrows are independent irreducible kG-homomorphisms
among them. We denote by I',(kG) the stable AR quiver of kG. After Webb pub-
lished an important paper [W], many results concerning the shape of I';(kG) have
been obtained. (See [E2], [E3], [ES] and [O1].) Each connected component I' of
I',(kG) has a tree T such that I is isomorphic as graphs to the graph ZT which is
obtained by a specific way from countably many copies of T. This T is uniquely
determined up to isomorphisms and called the tree class of T

Main results

Here we announce two results. First one says that the tree classes of connected
components of I';,(kG) have been completely determined, assuming that k is a
perfect field. The following should be the final result in this nature.

Theorem A. Letk be a perfect field. Then the tree class of a connected component
of T's(kG) is one of the following: A,, A2, Ao, B3, Boo, Do or AS. Moreover,
each of the above in fact occurs.

Remark. For each of above possibilities, the following detail holds. Here I is a
connected component of I',(kG) and D is a defect group of the block to which the
modules in I belong.

(i) A, occurs if and only if D is cyclic. Moreover, then we have ' = T',(B).

(ii) A71.2 or B3 occurs only when D is a four group. In fact, /im occurs for kD
and Bj occurs when G is the alternating group on 4 letters and k does not contain
a cube root of unity.

(iii) Boo occurs only when D is dihedral. An example is given in this note.

(iv) AR occurs only when D is dihedral or semidihedral. It occurs for kD.

(v) Do, occurs only when D is semidihedral. It occurs for kD.

(vi) If the tree class is A, then we have I’ = ZAX unless D is a four group.

(vii) If k is algebraically closed, then one of Ay, Ac, Do Or AZ must occur.
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(viii) If the modules in I" are periodic, then its tree class is Aq.

Parts (i), (vii) and (viii) can be found in [B2]. Erdmann showed in [E3] that A3
and D, occur only when the block is tame, i.e., p = 2 and D is dihedral, generalized
quaternion or semidihedral. The tree classes for tame blocks are studied in [E2].
Consequently, Remarks (iv) and (v) hold. In [ES], they proved that Euclidean
diagram appears only when D is a four group. It implies (vi), and since the structure
of such blocks are well known, we have (ii). (See also [B2].) Therefore, it has been
proved already in several papers that A, is the only finite Dynkin tree class, 4,,2
and B are only Euclidean tree classes, and the rest are infinite Dynkin tree classes,
Aco, Deo, AZ, By and Coo. Hence, in order to prove Theorem A, it suffices to
give an example of a Bo,-component and to prove the following.

Theorem 1. Let k be a perfect field. Then there is no component whose tree class
18 Coo-

If k is a perfect field, then a Co-component may appear only when the following
situation is the case.

(1.1) The Galois action induces an involutive automorphism « of a component
T of T'4(kG) isomorphic to ZD, such that « interchanges the two ends of I,

On the other hand, it is known that a B,-component appears when we have the
following situation.

(1.1)’ The Galois action induces an involutive automorphism « of a component
T’ of T',(kG) isomorphic to ZAZ such that a gives a reflection with respect to a
certain 7-orbit in I'.

An example of a By-component is given in the end of this note. Thus (iii) of
the previous remark holds.

The second result concerns the distribution of vertices of modules in a single
component, we have the following, which would be also the final result for non-
periodic components.

Theorem B. Let k be a perfect field, and let " be a connected component of
I's(kG). Suppose that it is not a tube, i.e., that modules in T' are not Q-periodic.
Then one of the following holds. Moreover, each of the following in fact occurs.

(i) All the modules in T' have vertices in common.

(ii) Weean take T : X1 - Xa— X3 —++ —Xn—... inT with T = ZT and
vz(X1) < v2(X2) = v2(X3) = vz(X) = - - = v2(Xp) =....

(ili) p = 2, T = ZAZ, and only two distinct vertices P and Q occur, with
|P : Q| = 2. Moreover, one of the following holds.

(iiia) Q is a dihedral group of order greater than 4, and the modules with vertex
Q lie in a subquiver I'q such that both T'q and '\ T'q are isomorphic to ZA as
grophs.

(iiib) @ is a Kleinian four group and P is a dihedral group of order 8, and the
modules with vertez Q lie in two or four adjacent T-orbits.

Remark. The above (i) and (ii) occur in many cases, (iiia) occurs for a dihedral
2-group. See [(3.3) of E1]. (iiib) occurs for a dihedral group Dg of order 8 and
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the symmetric group S4 on 4 letters. kDg has a component satisfying (iiib) above
with two adjacent r-orbits of modules having four group vertex, and kS; has a
component satisfying (iiib) above with four adjacent 7-orbits of modules having .
four group vertex. See also [E1] and [E2, V.3].

On the vertices of modules, beginning with the result for p-groups in [E1}, there
are several developments [U2], [OU2] usinig the generalization of Green correspon-
dence due to Kawata [K1]| and the results of vertices of modules in the Auslander-
Reiten sequences [U1], [OU1]. The most parts of Theorem B have been proved in
[OU2]. More precisely, it has been shown there that there are only three possibil-
ities (i), (ii) and (iii) of which (i) and (iii) are exactly the same as in Theorem B
above. However, the part (ii) of the main theorem in [OU2] is as follows.

Statement (ii)’. WecantekeT: X;—X;—X3—+--—Xp~... in[ withT = ZT
and oneof the following Rolds.

(iia) vz(X)) < vz(X2) = v2(X3) = vz(Xy) = --- = vz(X,) =...,

(iib) vz(X1) < vz(X2) = vz(X3) < vz(Xy) =--- = vz(Xp) =...,

(iic) vz(X1) = v2(X2) < vz(X3) = vz(Xy) =--- = vz(Xy) =...

Thus, in order to prove Theorem B, it suffices to show the possibilities (iib) and
(iic) above do not occur. More precisely, it suffices to prove the following.

Theorem 2. Let k be a perfect field, and letT" be a connected component of 'y (kG).
Suppose thatI' = ZA,,. Thenwe can takeT: X, — X2 —-X3—----—Xq~... aT
with I & ZT and vz(X)) < vz(X3) = v2(X3) = vz(Xy) = --- = vz(Xy) = ...

In the very final remark of [OU2], it is remarked that the above (iib) or (iic) may
occur only if the following situation would be the case. See also [E1, Theorem B].

(1.2) The prime p is 2 and a 2-group D is a normal subgroup of a finite group
G and a certain element of G induces an involutive graph automorphism « of a
component I of 'y (kD) isomorphic to ZD,, such that a interchanges the two ends
of I.

Semidihedral groups

Proofs of Theorems 1 and 2 use some general reduction results [E1}, [K1], [K2],
[O1], [OU2], [U2] and Galois decent ([B1, 2.33]). Then, we may assume that a
defect group D is a normal subgroup of G. Moreover, for Theorem 1, we may
suppose that G = D. Furthermore, considering (1.1) and (1.2), it suffices to show
that no actions on a Dy-component of I'y(kD) interchanges its two ends. Then
the following is of course useful.

Theorem (Erdmann [E3]). Let D be a p-group. Suppose that T'y(kD) has a
connected component isomorphic to ZDo,. Then D is semidihedral.

In the rest of this section, we assume that D is a semidihedral group of order
2", n > 4 and k is a perfect field of characteristic 2.

Another useful thing is the following. Namely, all the indecomposable kD-
modules are already classified.
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Theorem (Crawley-Boevey [C]). All the isomorphism classes of indecompos-
able kD-modules are classified.

In [C], it is assumed that || > 4. However, by an easy argument, the result also
holds when |k| = 2.

By using the above classification, we can prove the following by mostly compu-
tation.

Lemma 1. If indecomposable kD modules X and Y lie in an end of a component
isomorphic to ZDo, and have the same predecessor. Then dimgX # dim,Y.

By the above, we have ;

Lemma 2. LetT be a connected component of T'y(kD) such that T = ZD,,. Let o
be an automorphism of kD that stabilizes T'. Then every module in T is a-invariant.

Lemma 2 implies that neither (1.1) nor (1.2) may occur. Therefore Theorems 1
and 2 have been proved.

An example of a B,,-component

The following gives an example such that its stable AR quiver has a component
isomorphic to ZB,. It is due to T. Okuyama ([02]).

Suppose that k is a perfect field which does not contain a cube root of unity.
Let G be a group generated by z, y , z and ¢ with relations:

=y = (zy)‘ =2 =1 = 1,22 = zz,yz = zy, iz = yt, ty = Tt, tz = 2%t

Then |G| = 243 and G has normal subgroups
D=<z,y> and C=<z>.

Then D is a dihedral group of order 8 and C is a cyclic group of order 3. Let
H = D x C. Let a be a Galois automorphism such that « interchanges the two
cube roots of unity. Since k does not contain a cube root of unity, kC has the
unique (up to isomorphisms) simple module T of dimension 2. It is G-invariant,
and since G/C is a 2-group, T can be extended to a simple kG-module S. Moreover,
it follows that T ® £ = Ty @ T, where T} and T are non-isomorphic simple kC-
modules with Tf* = T>. However, S ® k is a simple XG-module, since T} = T; and
(S0k)c2Ti 8T

Let X = (x - 1)kD/skD and Y = (y — 1)kD/skD, where s is the sum of all the
elementsin D. Then X and Y are non-projective indecomposable k£ D-modules and
we have X* =Y and Y* = X, but X and Y are invariant under the Galois actions.
It is known that X and Y lie in the same connected component of T',(kD) which is
isomorphic to ZA3. See W] or [E2]. Now X @z T1, Y ®r Ty, X @ T2 and Y @ T
are non-isomorphic indecomposable kH-modules, and we have (X®;T1)! = Y®r T2
and (Y®T1)' = X @ T2, and (X @ T1)® = X @ Tz and (Y Qs Th)* =Y &; T.
Of course, X ®; T} and Y ®¢ T} lie in the same component 6, and X & T> and
Y ®; T, lie in the same component ©,. Both ©; and ©. are isomorphic to ZASL.

214



Hence Z) = (X @ T1)¢ = (Y ®; 12)€ and Z; = (X ®; T3)€ = (Y @ T1)C are
non-isomorphic indecomposable kG-modules, and we have Z = Z,. Moreover, we
have ©% = ©; and Z; and Z, lie in the same component I isomorphic to ZAZ.

Finally, we recall that (k) ®g T; lies in ©; for i = 1,2. Here (%) is the Heller
translate of the trivial kD-module k , i.e., the kernel of the projective cover of k.
We have (Q(k) @z Th)t = Q(k) ® T2 and (k) ® 1) = Q(k) ® T2 Therefore
(Q(E) @ T1)€ lies in T and is a-invariant. Since 2{ = Z, and they lie in T, too, it
follows that « satisfies the condition in (1.1)’. Thus we have a Bo-component. In
fact, it is the one which contains Q(S).
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Principal blocks with extra-special defect groups of order 27

Yoko Usami
Ochanomizu University, Department of Mathematics

Otsuka 2-1-1, Bunkyo-ku, Tokyo 112 , Japan

§ 1. Introduction

Let G be a finite group and p be a prime number. Let b be a p-block of
G, P be a defect group of b and k(b) ( respectively, 1(b) ) be the number
of irreducible ordinary characters ( respectively, irreducible Brauer

characters ) in b. Suppose that

two blocks b and b' of finite groups G and G' respectively,

have the common defect group P and their Brauer categories (1)

Brb,P(G) and Brb',P(G') are equivalent .
( See [FH] for Brauer categories.) On condition (1) there is a question
whether we have
k(b) = k(b*) and 1(b) = 1(b") (2)

or not. We have a following conjecture.

Conjecture 1. When b and b' are principal blocks satisfying condition

(1), the equalities in (2) hold.

When P is an abelian group , it is known that a block b of G and its
Brauer correspondent BrP(b) in NG(P) have equivalent Brauer categories (i.e.

fusion of b-subpairs of G is controlled by NG(P) by Proposition 4.21 in [AB]),
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and Broué conjectured that they are derived equivalent ( respectively,
isotypic ). See Conjecture 6.1 and Question 6.2 in [Br2]. Note that each
of these conjectures implies that we have
k(b) = k(BrP(b)) and 1(b) = l(BrP(b)) (3)

for any block b with abelian defect group P. As is stated in [Br2]
neither of Broué's conjectures ‘above does not hold when P is not an
abelian group. The principal 2-block b of any one of Suzuki groups Sz(q)
and 1ts.Brauer correspondent have equivalent Brauer categories ( actually,
fusion of P is controlled by its normalizer,. since 2-Sylow groups are T.I.
sets ), but they are not derived equivalent nor isotypic ; neventheless
(3) holds for them (cf. Consequences 5 and 7 in [A]). Here we have to add
one more remark. M.Kiyota pointed out that a group (Z3x Z3))408 , a semi-
direct product of an elementary abelian 3-group of order 9 and a quaternion
group of order 8 whose unique involution is acting on Z3X'Z3 trivially, has
only two 3-blocks ( i.e. the principal block bo and the other block bl) and
their Brauer categories are equivalent to each other but we have l(b0 ) 4
l(bl) .

In this paper we fix P as an extra-special group of order 27 of exponent
3 , and consider principal 3-blocks b having P as a defect group and check
Conjecture 1. Note that in this case having equivalent Brauer categories
implies having the same inertial quotient E (’.‘-:‘NG(P)/PCG(P) here ) and the
same fusion of P. At any rate, using the classification of finite simple
groups, we determine k(b), 1(b) and ko(b) completely and proves that
Conjecture 1 is true for such blocks , and consequently we prove that Dade's

conjecture of ordinary form holds for b.(Hene ko(b) is the number of
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irreducible ordinary characters in b of height zero.

When the author visited 1l'Universite Paris 7 last year, Lluis Puig
suggested an idea to use his construction of characters as functions on
local pointed elements in Corollary 4.4, Theorem 5.2 and Theorem 5.6 in
[P]. The author uses his idea to prove Theorem 1 below.

In the following we denote a cyclic group of order m by Zm , a
quaternion group of order 8 by 08 , a dihedral group of order 8 by D8 and

a semidihedral group of order 16 by SD16 respectively.

Theorem 1. Let b be the principal 3-block of a finite group G with
an extra-special defect group P of order 27 and of exponent 3. Let E be the
inertial quotient of b ( i.e. EZ& NG(P)/PCG(P) ) and set Z(P) = <u) for an
element u in P, Then we have the following.
(1) When NG(P)gCG(Z(P)) , fusion of P in G is controlled by NG(P) and one
of the following holds:
(i) IfE=1, then b is 3-nilpotent and k(b) = 11, ko(b) = 9 and 1(b)
=1,
(ii) If Ex Z2 , then k(b) = 10 , ko(b) =6 and 1(b) = 2. ( In this case
E acts on P/Z(P) fixed-point-freely. )
(iii) If E & Zl; , then k(b) = 14 , ko(b) = 6 and 1(b) = 4.
(iv) If EZ 08 , then k(b) = 16 , ko(b) =6 and 1(b) = 5 .
(2) When NG(P) $ CG(Z(P)) , E is isomorphic with either Z2 . sz Z2 ZB .
D8 or SD16 and we have an estimate of k(b) as in Table 1 below according to

E and the number of conjugacy classes of elements of order 3. When E%& Z2.

E does not act on P/Z(P) fixed-point-freely. In each case k{(b) - 1(b)
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takes a constant value. When EZZy , each case is divided into two
subcases according to fusion of a basic set of Cc(u) in the extended

centralizer C&(u) ( = {gec I ud = uor u-l} ) .

Using the classification of finite simple groups we obtain the following
theorem. As is well known, we can assume that Op.(G) = 1 when we treat the

principal p-block, of G.

Theorem 2 ( Using the clqssification of finite simple groups ), Let G be a
finite group with 03.(G) = 1 having an extra special 3-Sylow group P of order
27 of exponent 3. Let M be a minimal normal subgroup of G. Then one of the
following holds:
(i) nga and Z(P) is a normal subgroup of G and fusion of P in G is controlled
by NG(P). As for the principal 3-block b, k(b) and 1(b) are uniquely determined
according to its inertial quotient.
(ii) Ma2Z

%2, and G/M is embedded in GL(2,3). In particular, G is 3-solvable.

3773
(iii) MaA PSL(3,q) where q = 3k + 1 and (k,3) = 1. Furthermore we have
PGL(3,q) S G S Aut(PSL(3,q))
(iv) M2 PSU(3,q ) where q = 3k -1 and (k,3) = 1. Furthermore we have
PGU(3,q) £ G gAut(PSU(fi,q)).
{.v) Mgnz,‘ , Ru or J4 . Furthermore G = M.
(vi) M&PSL(3,3), PSu(3,3), 21“4(2)', M12 ' J2 or He. Furthermore G = M or Aut(M).
(vid) M QCz(q) vhere q = 3k = 1 and (k,3) = 1. Furthermore MSG SAut(M).
(viid M2 2I-",‘(q) where 22m+1= q =3k -1 and (k,3) = 1. Furthermore M £6 &
Aut (M).

All exact values of k(b) for the principal blocks b above are written in

219



Table 2. When NG(P) gCG(Z(P)), we have always ko(b) = 9 . Furthermore,

Dade's conjecture of ordinary form holds for b in any case.

§ 2.. Remarks on Theorem 1

(1) After the author obtained Theorem 1, Masao Kiyota told the author
that several years ago he already determined k(b), ko(b) and L(b) for
principel blocks b when NG(PO g;Cb(Z(P)) by Brauer and Olsson's method using
the orthogonality relation between columns of generalized decomposition
matrix.

(2) Outline of a proof is as follows. First, list up all possible
Broué's ( or Alperin's) conjugation families for b-subpairs { with an aid
of 3-strongly embedded subgroups ) in order to determine fusion of b-subpairs
in G ([Brl, CP]). This work means to list up all possible Brauer categories
as in [CP]). Note that when b is a principal block, b-subpairs are equivalent
to p-subgroups. Second, collect information about blocks bQ such that

(1,b) & (Qby) & (Pre) ,
where (P,e) is a fixed maximal b-subpair. Third, construct a Z-basis of
generalized characters in b which vanish on 3-regular elements. Here we
apply L.Puig's Theorem 5.6 in [P], where he showed some equivalent conditions
of a function on local pointed elements to be a generalized character.
Fourth, determine the decomposition of each character in the above Z-basis
into irreducible characters in order to know k(b), since it is known
that any irreducible character in b appears in some gereralized character
in this Z-basis. In order to determine these decompositions the author

used a computer ( with an aid of Hikoe Enomoto ) and also checked the



elementary divisors of Cartan matrices by a computer. Unfortunately, when
NG(P)$ CG(Z(P)) » we can not determine k(b) uniquely. There are huge
number of possible decompositions. But , as for k(b) , it seems that we
can get almost the same estimate of k(b) as this by hand.

(3) VWhen E is of order 2 , either G has a normal subgroup of index 3 ,
or G is a 3-solvable group of 3~length l.by S.D.Smith and A.P.Tyrer's
theorem in [ST]). ( Masao Kiyota informed the author of this theorem after

the syml;osium. )

§ 3. Remarks on Theorem 2

(1) Using the strong assumption that Z(P)<QG , k(b) in (i) is deters.
mined . Here we already use the classification of finite simple groups to
determine the number of irreducible ordinary characters of a principal 3-
block with an elementary abelian defect group of order 9 and with the cyclic
inertial quotient of ‘order 8.

(2) If G is a 3-solvable group with 03.(G) = ] and has an extra-
special 3-Sylow subgroup of order 27 of exponent 3 , then G is completely
determined, that is , either the semidirect product of P and a group E iso-
morphic with 1, Z, , Z2,X2, , Z, , Qg , Dgor SD;. or (Z3XZ3)£SL(2,3)
or (Z3 XZ3)adGL(2,3) ( with all faithful actions ). (cf. Proposition 53.4
in [Ka] or [Ko] ) .

(3) It is not easy to choose the irreducible characters in b among
all irreducuble characters in G when G belongs to one of infinite series

in (iii), (iv), (vii) and (viii). Fortunately, any nonprincipal 3-block
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of a simple group in these infinite series has a proper subgroup of P as
a defect group., So using the estimate of k(b) in Theorem 1 and the known
facts on the number of irreducible ordinary characters in other 3-blocks
and some more information about b itself, we determine k(b) effectively
in these cases. The author thanks Ken-ichi Shinoda and Meinolf Geck for
information about 2F4(q).

(4) In order to prove Dade's conjecture in this case, we divide the
radica1'3-chains into two subsets whether the last term of a radical
3-chain is a defect group of the eﬁrresponding principal block of the
normalizer of the chain or not, Up to G-conjugacy, there is a one-to-
one correspondence between a radical 3-chain of length m in the former
subset anq a radical 3-chain of length m-1 in the latter subset by the
Brauer correspondence between corresponding principal blocks. Then by
cancellation we get the conclusion (cf. 2.3 in [U]).

(5) There is no perfect isometry between the principal 3-blocks of
PXIZ8 and PSU(3,3), but there is a perfect isometry between the principal

3-blocks of PSU(3,3) and J There is no perfect isometry between the

9"
principal 3~blocks of P)d’SD16 and 62(4). but there is a perfect isometry
between the principal 3-blocks of 62(4) and 62(5). There are perfect -
isometries between the principal 3-blocks of (Z3x Z3))dSL(2,3) and
PGL(3,q) with q=3k+l and (3,k) = 1 and PGU(3,q') with q'=3k'-1 and (3,k')
al. There is a perfect isometry between the principal 3-blocks of PSL(3,3)

and Ml2 .
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Table 2 : Ng(P) & Co(Z(P)) & =k(b)

Incrtial Fusion of P is Otherwisc
quotient | conirollcd by N5 (P)
P— (1} : 6 classcs IS‘ cl::s:s PGL(3.9) = G < Aul(PSL(3,9))
k=10 =
q=3k+1, 3K =1
Z, & |
(Z,XZ3) M SL(2,3)
PGL(3.,q q=3k+1/3, k=1
PGU@3,q) * (cdd opder) q=3k—1 (3, k)=1
P— {1} : 4 classes 3 classes 2 classes
k=11 Casc 1 Casc 2
k=11 k=11
PSL(@3,3)
Z,XZ, (Z3XZ3) X GL(2,3) M,
PGU(3,q) + (even order)
q=3k—1 G, k=1
P— {1} : 2 classcs
Subcasc |
k=13
Zy PSUQ, 3), J,
P—{1} : 3 classes 2 classes 1 class
k=13 k=13 k=13
M,,, Aul(M,,) 2F_’, (2)
Dy Au(PSL(3,3))
He, Aul(He)
P— {1} : 2 classcs 1 class
k=14 k=14
D>
SD, ¢ Aul(PSU(@3, 3)) Ru

G,(q) = G < Aut(G,(q))
q=3k+l 3,k =1
Aul(d,)

2F,(2) =G < Aul(?F(q))
Js




For the characters of groups in Table 2

ATLAS

B. Chang, The conjugate classes of Chevalley groups of type (Gz).

J. Algebra, 9 (1968), 190-211.

B. Chang and R. Ree, The characters of Gz(q), Symposia Mathematica XIII,
Instituto Nazionale de Alta Mathematica, (1974), 395-413.

V. Ennola, On the characters of the finite unitary groups, Ann. Acad.
Sci. Fenn. 323, (1963), 1-34.

H. Enomoto, The conjugacy classes of Chevalley groups of type (Gz) over
finite fields of characteristic 2 or 3, J. Fac. Sci. Univ. Tokyo Sect. I
Math., 16 (1970), 497-512.

H. Enomoto and H. Yamada, The characters of Gz(Zn), Japan. J. Math, 12
(1986) 325-377

K. Shinida, The conjugacy classes of the finite Ree groups of type (Fa).
J. Fac. Sci. Univ. Tokyo Sct. IA Math.,22 (1975), 1-15.

G. Malle, Die unipotenten Charaktere von 2Fa(qz). Comm. in Algebra, 18
(7), (1990), 2361-2381.

R. Steinberg, The representation of GL(3,q), GL(4,q), PGL(3,q) and
PGL(4,q), Canadian J. Math. 3, (1951), 225-235.

225



(]

(aB)

[Brl]

[Br2]

(CP]

[FH]

(Ka]

(Ko]

(P]

(vl

References

J. Alperin, Weights for finite groups, Proc. Sympos. Pure Math.

47 (1987), 369-379.

J. Alperin and M. Broué, Local methods in block theory , Ann. of
Math. 110 (1979), 143-157.

M. Broué, Theorie locale des blocs d'un groupe fini, Proceedings
of the International Congress of Mathematicians, Berkeley, 1986,
360-368.

M. Broué, Isometries parfaites, types de blocs, catéﬁories dérivEes.
Astérisque 181-182 (1990), 61-92..

M. Cabanes and C. Picaronny, Types of blocks with dihedral or
quaternion defect groups , J.Fac.Sci.Univ. Tokyo Sect.IA, Math. 39
(1992), 141-161.

P. Fong and M. Harris, On perfect isometries and isotypies in finite
groups, Invent. Math. 114 (1993), 139-191,

G. Karpilovsky, ™ Structure of Blocks of Group Algebras", Longman
Scientific and Technical, 1987

S. Koshitani, On group algebras of finite groups, Proc. 4th Internat.
Conf. on Representations of Algebras, Springer. Lecture Note Series,
1178, 109-128.

L. Puig, Pointed groups and construction of characters, Math. Z,
176 (1981), 265-292.

Y. Usami, Perfect isometries for principal blocks with abelian defect

groups and elementary abelian 2-inertial quotients , J.of Algebra

196 (1997) , 646-681.



Perfect isometries and the Glauberman correspondence
Atumi Watanabe (Kumamoto University)

Introduction

_ In the character theory of finite groups the Glauberman character correspondence is well
known. In this report we construct a correspondence for blocks of finite groups which is
given by the Glauberman character correspondence. Between the corresponding blocks,
there exists a perfect isometey in the sense of [B].

Let S and G be finite groups such that S actson G and (| S |,| G |) = 1. We put
I' = SG, the semidirect product of G by S . Let (K, O, F) be a p-modular system such
that K is algebraically closed, where p is a prime. As usual we denote by Irt{G) the set of
irreducible characters of G and by Irrs(G) the set of S-invariant irreducible characters of
G. We recall the Glauberman character correspondence.

Theorem ({G] ; (I}, Chapter 13).  For every pair (G, S) such that S is solvable and acts
on G and (| G |,| S |) = 1, there exsits a uniquely determined one-to-one map w(G, S) :
Irts(G) — Irr(Cg(S)). These maps satisfy the following properties :

(i) If T is a normal subgroup of S and H = Cg(T), then (G, T) maps Irrs(G) onto
Irrs(H).

(ii) In the situation of (i), #(G, S) = n(H,S/T)=(G,T).

In the above let 8, = =(G, S)(x), i.e., the Grauberman correspondent of x €lrrs(G). If
S is a cyclic group generated by s, then there exists an extension (for example the canonical
extension) ¥ of x to SG such that if § =< s' >, then

%(s'c) = B (c) (Ve € Ca(S)), € =%l

Let BI(G) be the set of blocks of G and Blg(G) be the set of S-invariant blocks of G. We
mean a block of G a block ideal of OG. For a block B of G we denote by Irr(B) the set of
irreducible characters of G belonging to B. For a central idempotent e of OG, let Rx(G, e)
or R (G, eOG) be the additive group of characters of G afforded by K Ge-modules. Under
the above notation the following is our main result.

Theorem 2. Suppose that S is solvable and S centralizes a Sylow p-subgroup P of G.
Then there exists a unique bijection p(G, S) from Bls(G) onto Bl(Cg(S)) such that if B €
Bls(G) corresponds to b € BI(Cg(S)) by p(G, S), then there exists a perfect isometry R :
Rk(G, B) = Rk(Cq(S),b) such that R(x) = £=(G, S)(x) for any x € Irr(B). Moreover
if b = p(G, S)(B), then B and b have a common defect group.
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§ 1. Preliminaries : Perfect isometries and block extensions

Broué’s perfect isometry is an important notion in block theory and in this report it
is our big concern. The Clifford theory for blocks due to E.C. Dade, what we call block
extension, plays a big role in our arguments. In this section we state some results on perfect
isometry and block extension which we use to prove our results.

Let G and H be finite groups and e (resp. f) be a central idempotent of OG (resp. OH)
and Rk((G,e), (H, f)) be the additive group of generalized characters of G x H afforded
by (KGe, K H [)-bimodules.

Definition ([B]). Let u € R« ((G, e), (H, f)). p is per fect if p satisfies the following.
(i) Vhe HandVg€eG, (u(g,h)/|Cu(h)]|)€ Oand (u(g,h)/|Calg)|) €O,
(i) if u(g, h) # 0, then g is p-regular if and only if h is p-regular.

For p € Rk((G,e), (H 1)) let R, be a homomorphism from Rk(G,e) into Ri(H, f)
defined by

Ry(a)(h) = Y. u(g™' h)alg) (YheG)
I G' 1G1 %
for all @ € Ry(G,e). I Irt(G) = {x1,X2, s Xn }r It(H) = { 1,{2+++,(m } and p =
i mii(x % §5) (nij € Z) , then we have R,(x;) = L;n4;¢; by the orthogonality relations
of characters. If u is perfect and R, is a linear isometry from Rx(G, e) onto R (H, f),
then R, is called a perfect isometry. The following follows from [B], Proposition 1.3.

Lemma. Let L be another finite group and g be a central idempotent of OL and v be
a generalized character of H# x L. If R, and R, are perfect isometries, then the composite
R, o R, is a perfect isometry from Rx(G, e) onto Ry (L, g).

From [B], Theorem 1.5, we have the following.

Theorem ([B]). Let R, be a perfect isometry from Rx(G, ) onto Ry (H, f). Then

(i) Z(OGe) and Z(OH f) are isomorphic as R-algebras. In particular OGe is a block
of G, then OH f is a block of H.

(ii) Suppose that OGe and O/fi f are blocks, and put B = OGe and b = OHf. Then
the defects of B and b are equal, and there exists a height-preserving bijiection between the
ordinary irredcuible characters in B and b. Moreover the numbers of modular jrreducible
characcters in B and b are equal.

Next we prepare some results from [D]. Let I' be a finite group and G be a normal
subgroup of I We set S = I'/G. Then the group algebra OTI" is an S-graded Clifford
system with the o-component (OI), = Z,¢, Oz for 0 € S. Put € = C(OG in OT) = {
c€O0T |cx=zcforal z € OG } and €, = €N(OT),. Let B be a fixed block of G with the



block idempotent e and put S[B] = {0 € S | (¢€,)(eC,-1) = €, }. S[B] forms a subgroup
of § and S[B] C I'p/G, where I'p is the stabilizer of B in I. Let €[B] = @, eg;g6C.
€[B] is an S[B}-graded Clifford system with €[B], = e€, for all o € S[B]. For o € S[B,
there exist ¢, € €[B], and c,-1 € €[B],-:1 such that c,c,-1 = e by the definition of S[B].
Then (cy-165)? = ¢5-1¢, # 0. Hence c,-1c, = e. For an element s of o we put u, = s¢,-1.
Then u, is a unit of eOG with the inverse ¢,5~! and we have z% = (z°)~ ' = 2 for all
z € OG. From this fact we can see that any irreducible character in B is S[B]-invariant.
Any modular irreducible charcater in B is also S|B]-invariant.

Let D be a defect group of B and b be a block of Cg(D) associated with B. Let ¢ be
a unique modular irreducible character in b, Np(D),, be the stabilizer of ¢ in Nr(D) and
Np(D) < ¢ > be the Clifford extension. We denote by F the multiplicative group of F.
Since Ng(D),, centralizes Cr(D) < ¢ > /F (2 Cr(D),/Cg(D)), there is a "bilinear” map
w : (Ng(D)y/ DCg(D)) x (Cr(D),/Ca(D)) = F so that :

¥ = w(yDCq(D),zF)z Vz € Cr(D) < ¢ >, Vy€ Ng(D),.

Let Cr(D),, = { z € Cr(D),, | w(Ng(D),/DCe(D), zCe(D)) = {1} }. CG(Dz c Cr(D),
and Cr(D),/Cr(D)., is isomorphic to a subgroup of Hom(Ng(D),,/ DCg(D), F). The fol-
lowing is a part of [D, Corollary (12.6)], which is one of the main results of [D].

Theorem ([D]). Under the above notation we have S[B| = GCr(D)./G.

2. Correspondence for blocks

We go back to the situation in Intreduction. So we assume that S and G are finite groups
such that S acts on G and that S and G have coprime orders.

Proposition 1. Let B be an S-invarinat block of G. If S centralizes a defect group D
of B, then we have S[B] = S. In particular any x € Irr(B) is S-invarinat.

Remark By the above Dade’s theorem and the Schur-Zassenhause theorem, if S[B] = S
then S centralizes a defect group of B.

Proposition 2. Suppose that S is cyclic. Let B be an S-invariant block of G such that S
centralizes a defect group D of B. Then we have

(i) Let b be a block of Cg(S) containing =(G, S)(x1) for some x; € Irr(B). Then
there exists a perfect isometry R from Ry (G, B) onto Ry (Cg(S),b) such that R(x) =
+x(G, S)(x) for any x € Irr(B).

(ii) In the situation of (i), D is a defect group of b.
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Theorem 1. Suppose that S is solvable. Let B be an S-invariant block of G such that
S centralizes a defect group D of B. Then there exists a unique block b of Cg(S5) such
that Ire(b) = { (G, S)(x) | x € Irr(B) }. Moreover there exists a perfect isometry R :
Rx(G, B) = Ri(Cs(S),b) such that R(x) = £n(G,S)(x) for any x € Irr(B) and D is a
defect group of b

Theorem 2 is a direct consequence of the Glauberman correspondence theorem, Lemma
and Theorem 1.

Let B(G) denote the principal block of G. In the situation of Theorem 2, p(G, S)(B(G)) =
B(Cg(S)). Hence by Broué's theorem, (ii), B(G) has a unique modular irreducible char-
acter if and only if B(Cg(S)) has a unique modular irreducible character. Therefore when
S is solvable and S centralizes a Sylow p-subgroup of G, if Cg(S) is p-nilpotent, then G is
p-nilpotent. N. Chigira of Muroran Institute of Technology generalized this fact by purely
group theoretic methods as follows. The below Corollary follows from Theorem 2 and the
Feit-Thompson theorem.

Proposition 3 (Chigira). Assume that S centralizes a Sylow p-subgroup of G. If Cg(S)
is p-nilpotent, then G is p-nilpotent.

Corollary. Assume that a Sylow p-subgroup P of G is abelian and S centralizes P.
There exists a perfect isometry from Ry (G, B(G)) onto Rx(Cg(S), B(Cg(S)).

For the detail of our results, see [W)].
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Ternary codes and vertex operator algebras

Hiromichi Yamada

Department of Mathematics
Hitotsubashi University

This article is based on my talk about a joint work with M. Kitazume and M. Miyamoto
on a certain class of vertex operator algebras related to ternary codes. The details will
appear elsewhere.

1 Introduction

Vertex operator algebras have been studied from a wide variety of view point. This implies
rich properties of vertex operator algebras. Recently investigation of vertex operator
algebras as modules of their subalgebras isomorphic to a tensor product ®%, L(c;,0)
of Virasoro vertex operator a.lgebras has been done by several authors. Along this line
Miyamoto [M2] constructed a series of vertex operator algebras by combining the minimal
vertex operator super algebra L(},0) @ L(3,) and even binary codes.

In this article we construct vertex operator algebras associated with self orthogona.l
ternary codes. In order to obtain the vertex operator super algebra L(,,O) ® L(}.3 2)h
a lattice of rank one generated by an element a such that {a,a) = 1 is considered in
[M2]. Here we begin with a lattice L = v/2(A;-lattice). It is known [DLMN] that the
vertex opera.tor a.lgebra. VL contains three mutually orthogonal conformal vectors with
central charge 1, =, and § respectively, and the Virasoro element of Vj, is the sum of
these conformal vectors. These conformal vectors generate a subalgebra T isomorphic
to L(3,0) ® L(5,0) ® L( ,0). lnspectmg the action of T we obtain a vertex operator
a.Igebra. |somorph|c to L(§ O)QL(S, 3) and two of its modules, both of which is isomorphic
to L($,%). Combining them with a self orthogonal ternary code, we construct a vertex
operator algebra.

The article is organized as follows. In Section 2 we start from a V2 (Aq-lattice) L and
its cosets in the dual lattice L* of L. For a self orthogonal ternary code D, we define
a positive definite doubly even lattice I'p from these cosets. In Section 3 we review the
definition of the Fock space V,. and vertex operators Y(-,z). Then in Section 4 we
construct a vertex operator.algebra Mp associated with the code D. Finally, in Section
5 we discuss briefly the Griess algebra and its automorphisms of Mp.

2 Lattice I'p

We begin with a set of fundamental roots {a;, a;} of type Az with an inner product (-, -)
such that {a;, a;) = 2 and (@, a3) = —1. The root system of type A; is {£ e, ta;, a3}
with a3 = o) + a;. Let L = Za} + Zaj be a \/—(Ag-la.ttnce), where a = V2a;. For
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simplicity, we simetimes write z = af and y = aj. The dual lattice
L*={ceQ®zL|{a,Ll)CZ}

of L has the dual basis {25}, Zt2} of the basis {z,y} of L, and L has 12 cosets in L*.
Among them we choose the following three cosets, which are contained in 2L*.

=L, =20y =Yy
’ 3 ’ 3
In fact, 2L* = L° U L' U L? and the quotient group 2L*/L = {L°, L', L?} is of order 3.
Let D be a ternary code of length n. For each codeword 8 = (di, ... , d,), we assign

a subset Lj of the orthogonal sum of n copies of the dual lattice Lt;
Li=L"@®-.-@ L™ C (L*)"
Then since L' 4+ L7 = L**/ for i, j € {0, 1, 2} and D is closed under addition, the union
I'p = UsepLs

of all Ls ; § € D is a sublattice of (L*)". Note that I'p contains Lo, ., = L& --- & L.
Since (z,z) = (y,y) = 4 and (z,y) = =2, it follows that (@,a) € 4Z if a« € L° and
(@) € $ +42 if a € L' U L2. Hence we have

Lemma 2.1 If D is a self orthogonal ternary code of length n, then T'p is a doubly even
lattice of rank 2n, that is (a,a) € 4Z for a € T'p and in particular {a,B) € 2Z for
a,f ETp.

Note that {(a,8) € 3dg+2Z if « € L? and B € LS for d, g € {0,1,2}. Let s =
(diy ..., d,) and 1= (g1, --., ga) be two codewords of D and choose o € L%, B e L¥%.

Denote by & and S the elements (o', ..., a") of Ls and (8, ... , ") of L, respectively.
Then

(&,B) = Z(a,ﬂ)——& 4 mod 2Z, (2.1)

where § -9 =dygy + - - + dngn.

Example 2.2 Ifn =3 end D = {(0 0,0), £(1,1,1)}, then I'p = /2 (Es-lattice). In
fact,
—l iyl —2l 4y 23R
3 T3 T3
Jorm the extended Dynkin diagram of type Eg.

-z -y, ' i=12.3,

Example 2.3 Ifn =4 and let

_A_JU 1 10
D‘c“[l-IOI]
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be the [4, 2, 3] ternary tetracode. The codewords are
(0,0,0,0), (1,1,1,0), =£(1,-1,0,1), *(-1,0,1,1), *(0,1,~1,1).
Then p = /2 (Eg-lattice) and

'yl —zl4y? -2+
-z -y, 2, 3!! + = y+ 3 Us, 3 2

zz+22 _33_23 34_ C]
. 3y+ . Y + 3!!' -2,z 4y
Jorm the extended Dynkin diagram of type Eg. Here we write z* and y* for z and y of i-th
copy of L* in the orthogonal sum (L*)",

3 Vertex operator Y-, 2)

We shall consider the Fock space V,. associated with the lattice L* and the vertex
operator Y(v,z) = 3 qvnz™"" € (End Vj,1){2} for v € Vp.1 as in [D, Section 2], DL,
Section 3], [FLM, Chapters 4, 7, 8]. We also consider the subspaces V° = V,,, V! = V»
and V2 = Vja of Vy . associated with the cosets L° = L, L', and L? of L in L*. Then
(V°,Y) is a vertex operator algebra associated with the positive definite even, in fact
doubly even lattice L, and V' and V2 are irreducible modules for the vertex operator
algebra V°,

For convenience we shall review the definition and some basic properties briefly. We
tend to follow D], [DL}, and [FLM). Here we deal with only the case where the as-
sociated commutator map cof+,-) = 0. Thus we do not consider a central extension of
L* or a twisted group ring C{L*}. Instead, we use the group algebra C[L*] of L* as
a multiplicative group with basis e*; @ € L* and multiplication e*e? = e*t?. View
h=C®z L =C®z L* as an abelian Lie algebra and form its affine Lie algebra

h = @uez(h ®1") ® Cc & Cd.
Take its Heisenberg subalgebra
hz = Bognez(h ® ") & Ce.
It has a decomposition of the form.
bz = bz @ Cc@ b}

with l]z = ®n<0(b ® tn) and l]z = $n>0(b ® tn)

Let M(1) be the induced §z-module induced from the one dimentional Ce® bz -module
such that (a®t")-1 =0 for n > 0 and c-1 =1. As a vector space M (1) is naturally
isomorphic to the symmetric algebra S(h3) on hz. Under this isomorphism we shall
identify M(1) with S(hz). Denote the action of a ® t* on S(hz) by a(n). Then

[a(m), B(n)] = (@, BYmémino-



By the definition ¢ acts on S(f)i ) as the identity. X
The Fock space is the tensor product of two vector spaces V. = S(hz) @ C[L]. It is
Q-graded by the weight, where the weight is defined by

wta(—n)=n and wte® = (a,a)/2.

For a subset M of L*, let Vi = S(hz) ® C[M], where C[M] denotes the subspace of
C|L*] spanned by e*; a € M. For simplicity we set V¢ =V ; i =0,1,2. Then we have
Vape = Ve V@ Vi,

The vertex operator Y (e, z) for e*; a € Lt is defined to be

Y(e®, z) = E™(~a,z)E*(—a,z)e2® € (End Vp1){z},
where

E*(a,z) = exp( Z %n)z‘")

nE€xZyo
and the action of ¢, a @ t", €®, z® on V|1 is as follows. For u € S(li;) and g € L*,

c:u®@f—ued,
a®t"=on) :u@®e® i (a(n)u)®® for n#£0,
a®t’=a(0) :u®e® r— (a,fu®’, (3.1)
e :u®ef — u®et?,
22 ;u@®@f — oMy @ f
Fora € L, let
afz) = Z a(n)z™*"! = a(z)” + a(2)*
neZ
with

a(z)” = Za(n)z‘"" and a(2)* = Za(n)z"" .

n<0 n>0

Denote by : : the normal ordered product
1 a(2)X(2) 1= a(z)” X(z) + X(2)a(2)*,

where X(z) € (EndVy.){z}. The meaning is that the operators a(n) for all nonneg-
ative lntegers n are to be placed to the right of X(z). For a general element v =
a'(—ny)---a*(—ni) ® e* of V,u, the vertex operator Y(v,2) € (End V;1){z} is defined

by
Y(v,2) =: ((n—,llT (%)'"_l a'(z))

. ((nk_ll)' (%)"H a"(z)) Y(e*2):.

(3.2)



Since (L*, L*) C 3Z, we can expand Y (v, z) in the form of

Y(v,2) = Z vaz™""!

né %Z

wit.h Un € End V., which is called a component operator. Moreover, since (L,2L*) C 22,
(L', /) C 1Z,and L' + IV = L'*J, we have

-n-1 H (] 0 i
Y(u,2)o = {Enez“n"z with u,ve V' for ue V% veV', (3.3)

nelz¥n¥2™"7' with uw €V for weViive Vi,

Here the superscript ¢ + j is considered to be modulo 3.
The Jacobi identity [DL, (5.11)] gives

-15( ” ) Y(u,2)Y (v, z3)w — 258 (—zzz:- ZI) Y(v, )Y (w4, 22)0
= Z;'J (Zl z—z 20) Y(Y(u zo)u z-‘)w (34)

for u € V% and v,w € Vy 1.
Taking Res,, of the above identity and using

56 (" - ‘°) ey ("j‘“) :
2 1

we obtain a useful formula

Un Ul — UpligW = i ( )(u.v),..+,._.w (3.5)

=0

formeZandn e %Z.
As a summary we have

Lemma 3.1 (V°, Y) is a verler operator algebra associated with the positive definite even
lattice L whose Virasoro element is

w= glen(=1)* + as(=1? + as(~1)7)
(VY, Y) and (V?,Y) are V%-modules, and

Y(-,2): V' — Hom(Vi, Viti){z}

v— Y(‘U,Z)ly, = En&g-z ”nIV:Z_"-' (36)

. . yit
is an intertwining operalor of type (V‘ vi):



Let D be a self orthogonal ternary code of length n. For each codeword § = (di, ... ydn)
we assign the tensor product V; = V4 ®--- ® Vi of vector spaces. For v' € V4, define
the tensor product vertex operator

Y('®---@v", 2) =Y(v',2)® - @ Y(v",2)

as in [DL], [FHL]. Set Vp = @sepVs. Then (Vp,Y) is a vertex operator algebra. In fact,
it is identical with the vertex operator algebra W, associated with the positive definite
doubly even lattice I'p of Section 2.

We shall make some remark. For a, g € Lt, set

S(a, B, 21, 22) = E~(—at,21)E~ (=B, 2) E* (—, 21) E¥ (=, 2,)e*+P 2325
Then we have
Y(e*,2)Y (e, z) = S(a,B,21,22)(21 — z)( A,
Y(&,2,)Y (", z1) = S(a, B, 21,22)(22 — zl)(""”.
in (EndVp1){z1,22}. Now let § = (dy, ... ,dn) and v = (g1, ... , ga) be two codewords
of D and take of € L%, ff € L#%. Seta = (a',...,a")and B = (B',..., f*). These are

elements of Ls and L., respectively. We also set e% = ¢’ ®---®¢®" and &f = ' ®---®€",
which are elements of V; and V, respectively. Then by the definition of the tensor product
vertex operator, we have

Y(%, 21)Y (e, 22) = S(a*, B, 21,23) @ -+ ® S(a™, B, 21, 2a) (21 — 22)(®D),
Y(ef, )Y (eF,21) = S(a', 8", 21, 22) ® -+ ® S(a™, B, 21, 22) (22 — )&,

Since (&, 8) = 6.4 mod 2Z by (2.1), (&,B) is an even integer if the two codewords
4 and +y are orthogonal. Thus if § and + are orthogonal, then

(21 — 22)VY (%, 21)Y (€8, 22) = (21 — 22)VY (P, 22)Y (€5, 2,)

for some nonnegative integer N, that is Y(e?,z,) and Y(e?, z;) are mutually local ([L]).

4 Vertex operator algebra Mp

We shall construct a subalgebra Mp of the vertex operator algebra Vp of the preceding
section.

By [DLMN], the Virasoro element w of V° decomposes into a sum of three mutually
orthogonal conformal vectors

w‘ = %0’1('—1)2 el %Ia"
? = (—ai(—1) + 4az(—1)? + da3(—1)?) — 35(—%a, + 4Zay + 4Za3),
P = Eau(=1)? + aa(—1)? + a3(—1)?) + Hza, + Tay + Za, ),

w
w
where z,, = €* + e~{. The central charge c(w') of the conformal vector ' is

4

c(“") = En c(w2) = %i c(w.‘!) = g)
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and the central charge of w is c(w) = 2.
Each conformal vector generates a Virasoro vertex operator algebra

Vir(w') = span {w{1|n € Zo} = L(c(w'),0),
and V? contains the subalgebra
T = Vir(w') ® Vir(w?) ® Vir(w®) = L(-l-, 0)® L(-lll]' 0)® L(%. 0).

As T-modules, Vs are completely reducible and each irreducible summand is of the
form

(g b) ® (55 be) 8 L(3, ho),

where
1 1
hy € {0, ¥. sh -
1 7
_____ 4.1
h2 e {0' 80) 10) 16’ 5' 2}! ( )

1 221 2 7 13
haefo,—, & 1 2227 13 4

(see [DMZ], [W]).

The weights of such an irreducible T-module are h; + hz + h3 + n with n € Zyo. In
particular, its minimal weight is h, + A, + hs. More precisely, if ' is a homogeneous
element of L(c(w'), h;) of weight h; 4+ n; with n; € Z5o, then a' @ a? ® a® is of weight
hy + ha + h3 4+ ny + nz + n3 and it is an eigenvector of w} with eigenvalue k; + n;.

Calculating the eigenvalues of the action of wi;i = 1,2, 3 on the weight subspace
(VO)(my of VO of weight n < 3, we have

Lemma 4.1 V? has the following irreducible T-submodules as direct summands, each of
which is of multiplicity one.

L(:: 08 L(5: 0@ L(5,0),  L(3 08 L5, ) ® L(3, 3),
L3 DO LG w®LE, §), L3 0L, 3)® Lz )
L(3,})® L(%5. w)® L3, 1), L5 1) ® LG 3) ® L(}, 0),
L(3,0) ® L(55, 0) ® L(3, 3).
The minimal weight of any other direct summand is greater than 3.
Similarly we have

Lemma 4.2 V! has the following irreducible T-submodules as direct summands, each of
which is of multiplicity one.

L(3,0)® L(5, 0) ® L(3, 3), L(3,0) ® L(55, 3) ® L(3, %),
L(3, 1) ® L5, 1) ® L(3, ).

The minimal weight of any other direct summand is greater than 3.
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The decomposition of V2 into the direct sum of irreducible T-submodules is the same
as that of V!,

We shall extract a subalgebra from V° and also its submodules from V! and V2.

Theorem 4.8 Set M' = {v € Vi |w}v = w}v = 0}. Then

(1) M° = 1,40 @ 1y to ® (L(%,0) 9 L(%,3)). The weight 2 subspace of M° is
spanned by v° = W,

@M =1,4®1yL0® L(3,3). The weight § subspace of M is spanned by

-ltl —s=3y
vi= + e 4 T

@)Y M =1,0001,10® L(3, g) The weight 3 subspace of M? is spanned by

=23~y
vi= +c 3 +e 3.

Here 1.0 denotes the vacuum element of L(c, 0).

Proof Decompose V" into the direct sum of irreducible T-submodules and consider the
action of w] and w? on each direct summand. It follows that M® is a direct sum of
subspaces of the form 1,14 ® 1,1 6)® L(%, hs) with hy as in (4.1). The weights of V°
are nonnegatlve integers, so we have (1) by Lemma 4.1. Similarly the weights of V! and
V? are in 2 + Zyo, and so (2) and (3) follow from Lemma 4.2. O

Theorem 4.4 (1) u,v € M foru e M' andv e M7,
(2) (M®,Y) is a subalgebra of the vertez operator algebra (V°,Y) with the Virasoro
element w®, M and M? are M®-modules, and

Y(-,2z): M\ — Hom(M’, M*+i){z}

v+ Y(0,2)|s0r = Taeiz volmsz™" (42)

, . .. Mt
is an intertwining operator of type M oM

Proof The second assertion follows from the first assertion and Lemma 3.1, so it is
sufficient to show the first assertion. This can be done by the same argument as in the
proof of [M1, Proposition 4.9]. Take u € M and v € M’. Then wju = wjv = 0.
Moreover, Theorem 4.3 implies wiu = 0. Hence

wlu,v = WitV — u,,w}tj
= (Wgtt)ns1v + (witt)v
=0
by (3.5). Similarly w?u,v = 0. Since u,v € V*3, we conclude that u,v € M+, O

Let D be a self orthogonal ternary code of length n. Using M°, M!, and M? in
place of ¥, V!, and V? we obtain a subalgebra (Mp,Y) of the vertex operator algebra
(Vb,Y), namely, for each codeword § = (d,,... ,d,) we assign the tensor product M; =
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M4 ®- - @ M and set Mp = ®sepM;s. Then it follows from Theorem 4.4 (1) that the
subspace Mp of Vp is closed under component operators of every element of Mp. In the
case of § = (0,...,0), M; contains an element u’ whose i-th entry is v° and the other
entries are the vacuum 1 of M° ;

=19 919v°®1®---®1. (4.3)
Setw=1u'+u?+..-+u" Then

Theorem 4.5 Mp is a vertez operalor algebra with the Virasoro element &.

5 Griess algebra of Mp

Let v°, v!, and v? be as in Theorem 4.3. For a self orthogonal ternary code D of length n,
the Griess algebra , that is the weight 2 subspace (Mp)q) of the vertex operator algebra
Mp is of dimension n + k, where k denotes the number of codewords of weight 3. Let
u!,...,u" be as in (4.3). For a codeword & = (d,, ... ,d,) of weight 3, let

=z @ - @z € M;,

where z% denotes the vacuume 1 of M® if d; = 0 and z% = v¥ if d; = 1 or 2. Then
u',... ,u" and z% with & being over all cordwords of weight 3, form a basis of the Griess
algebra.

To determine the product and the inner product of the Griess algebra of Mp we need
to know the first several terms of Y(v*, z)v’. These terms are easily computed:

Y(vh2)v0= 21274 4 2v02 2 ...,
Y(v,z)v' =2viz-d 4.,
Y(v?, z)v? = 2viz-§
Y(VO, )V =Y (viz)v?=3viz"2 4 ... for i=1,2,
Y(v!,z)v? = Y(v?,z)v! = 31z-% 4+ 5v028 - - .
We consider the automorphism group of the Griess algebra of Mp in the case where

the code D is the [4,2,3] ternary tetracode (see Example 2.3). In this case the Griess
algebra is of dimension 12 and the product x and the inner product {:,-} with respect
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to the basis u!,... ,u?, z® are as follows ;

u' x o = 2650,

(oo [0 Ao,
AT i d; =0,

8:"‘ if §= )
x 27 =45 Zd;;eo“i if 6=—v,
G5+ if §# %9,
(u‘.auj) = g&'jv
(u',z%) =0,
27 if §d=—v
s v\ »
=) {o it 6# —

From these data we have

Propositon 5.1 Let D be the [4,2,3] ternary tetracode. Then the automorphism group
ot the Griess algebra of Mp is isomorphic to 32.2S,, where 25, is the automorphism group
of the code D and 3? is the coordinate automorphism group GF(3)/DL.

Here coordinate automorphisms are defined in a similar way as in [M2, Section 5].
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On the characterization of certain Cayley graphs

Norio YAMAZAKT'
Kyushu University
(email address: norio@math.kyushu-u.ac.jp)

About two years ago, M. Tomiyama and I have succeeded in [2, 3] the characterization
of the group association scheme of the symmetric group X(S,) for all n except 4. Roughly
speaking, the proof was obtained by proceeding in 3 steps as follows;

(i) We show the non-existence of some configuration of 4 vertices,

(ii) We show the uniqueness of the relation graph I’ corresponding to the conjugacy
class of transposition,

(iii) We determine the other relations. (This step is immediately obtained.)

The essential part of this proof is of step (ii). This is divided into two parts: the
determination of the local structure, and the determination of global structure from the
local structure. Viewing these proofs, we can see that these are independent each other.
So it seems to be natural to try to generalize the techniques used in these, separately.

Recentry, Tomiyama [1] had a generalization of the part on the local structure. Namely,
under the assumption similar to the one in (i) above, the local structures of the group
scheme of almost simple 3-transposition groups (for example, the Weyl groups of type E;
with i = 6,7, 8, the symplectic groups Sp;.,(2) with m > 2, and the orthogonal groups
05,,(2) with € € {+,—} and m > 2) were determined by the intersection numbers. In
this proof the characterization result of Fischer spaces by H. Cuypers and J. Hall is used.
In fact, in order to get it, we don’t need information of all intersection numbers. We only
need a condition on the graph distribution of the induced subgraph (of I') whose vertex
set is of vertices at distance at most 3 from any vertex. See Condition B written later.
(In fact, the assumption in [1] is slightly weaker.)

In the following, we shall investigate the graphs having such local structure.

We shall review the proof of the determination of the whole structure of I’ from the
local structure in [2].

Let T' = (S, D) be the Cayley graph with respect to the set D of all transpositions in
S, which is just the same as the relation graph corresponding to the conjugacy class D
by definition of the group scheme, and let ' = (V, E) be a graph having the same graph
distribution (with respect to any vertex) as of I'. Note that these two graphs have the
common valency and diameter, and that both are bipartite. Let d be the diameter of

*This manuscript was written during this author'’s visit at the Imperial College of London by the
support of the Japan Socicty for Prowotion of Science. (email: n.yamazaki@ic.ac.uk)
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these two graph. For g € S,, 2 € V, and an integer i with 0 < i < d, let Ty(z) (resp.
['i(g)) be the set of all vertices at distance i from = (resp. g). Let ['<i(x) = Upgj<i(T;(x)),
and I¢i(z) = Uogj<i(Tj(9))- .

In [2], we construct the graph isomorphism from I' to I". (This is the claim of the latter
part of step (ii).) More precisely, at first we pick any vertex z in I, define fo(id) = =z
where id is the identity in S,,, and inductively we construct bijections

fo: Ter(id) — Tgp(z)
which satisfy the following conditions (I), (II);

(I) If g € P<r-1(id), then £,(9) = fr1(g), )
(II) For g € T';_1(éd) and & € [;(id) with i < r, g and k are adjacent in [ iff f,(g) and
f~(h) are adjacent in I.

Note that the existence of the map f, is guaranteed by step (ii) mentioned in the begining
of this paper.

The above method to constract the graph isomorphism seems not to be general. Be-
cause in this proof, we check the existence of the maps by labelling permutations of
n-letters (i.e., elements of S,,) for vertices of I'. What method is more general?

Now we prepare some notation.
For a graph T, if vertices z,y are adjacent in I, we write £ ~ y. Define the relations
Ry’s with t € {(1),(2), (2 x 2),(3), (2 x 2 x 2),(2 x 3),(4)} as the following:

Ry = {(z,z) | = €T},

R(2)= {(:c,y)EI‘xI‘l:c~y},

R(2x2) = {(z)y) € 'xTl | a(z)y) = 2,|R(2)(3) n R(2)(y)| = 2})
R = {(z,y) €T x T | 8(=z,y) = 2,|Rz)(z) N Rz (y)| = 3},

Riaxaxay = {(z,y) €T x T | 8(z,y) = 3,|T2(z) N Rz (¥)| = 3,
| Ri2x2(z) N Riz)(v)| = 3},

Roxay =  {(z,y) €T xT'| 8(z,y) = 3,|T2(z) N Ray ()| = 4,
[Ri2x2(z) N Rg)(v)| = 3,|Rz(z) N Rg)(y)| = 1},
Ry = {(z,y) €T xT'| 8(z,y) = 3,|T2(z) N Rg)| =6,

[Ri2x2)(z) N Rgy()] = 2,| Ry (=) N Ry (w)| = 4},

where we let Ri(z) = {y €T | (z,y) € R} forz €T
Let A = {(1),(2),(2 x 2),(3),(2 x 2 x 2),(2 x 3),(4)}.

We consider the following conditions:

Condition A. There exists no 4-tuple (z,y, z,u) of vertices in I such that z ~ y ~
z ~u~z,(x,2) € Raxa), and that (y,u) € Ry)-

Condition B. The following hold:

(i) R, is symmetric for ¢t € A.
(ii) There exist no triangles or pentagons.
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(iii) For any z € T, T'a(z) = Rizx2),3)(z) and T'3(z) = Rizxaxz),(2x3).4)(2)-
(iv) The value pg} ., = [Ry,(z) N Ry, (y)| doesn’t depend on the choice of z,y € T' with
(z,y) € Ry, for ty = (2) and t3,¢; € A.
aes 2x2) _(3) 2x2x2) _(2x2x2) _(2x3) (2x3) _(4)
By definition we see that (sz)x (2))'P=2; (2)"’{2)’( (2’;2))"’(2) @3) 1P(2).2x2)1 P(2),(3) P(2).(2x2)
P @) =(23,3,0,3,1,2,4).

In fact, essentially, we have the following in [2]. (I plan to write the explicit proof of
this in [4].)

Proposition. Let I be a graph satisfying Conditions A and B, and let
{2x2 (2x%2) (2x2) (3) (3)
(P(z) @ | z).(zxzv P(z) @a»P 2)".(2)x2x2)' P(2),(2x3)» P(2),(4) P(2) (2x2x2)’ P(zy.(zxa)’ P@). @)
( 5 ,("'2 ,2(n — 2), "'43 4(n — 4),4,0, ("‘35 3(n - 3)).

Then [ is covered with the Cayley graph [ = (S, D).

In this proof, we regard [ not as the graph labelled on vertices but as the (;)-coloured
graph labelled on edge by D. In general, investigating Cayley graphs, it seems more
natural to label edges than to label vertices.

We can observe that T has the following important properties. These are keys of the
proof of Proposition.

(1) T is bipartite. In general, the universal cover of graphs satisfying Condition B
must be bipartite. Because for any graph of such family, the bipartite double also satisfies
this condition.

(2) For all  with 0 < i < d and for all z,y € [ with 8(z, y) = i, there exists a minimal
geodetically closed subgraph (i.e. it is unique) of diameter i containing z,y. All of these
are Cayley graphs of subgroups of S,, generated by the subsets of D. This property is
strongly related to the universality of ". I believe that on the study of a Cayley graph
with respect to a "good” generators D (for example, the conjugacy class generating the
group), it is very important to investigate the Cayley subgraphs with respect to subsets
of D which form geodetically closed subgraphs.

(3) Regarding T" as a D-edge-labelled graph, we can see the following: For z € T, let
Nn==z-a,n=y- by =w-awith a,b € D, where 2 - a means the vertex adjacent to
z by the edge labelled a. Then, since aba € D, y; - (aba) = z. Of course, such a situation
occurs because D is the conjugacy class.

As the next problem, the following seems interesting.

Problem. Find the universal cover of the family of graphs which satisfy Conditions
A and B, and which contains one of the Cayley graphs of Sps,.,(2) or 0%,,.(2).

It can be conjectured that the Cayley graphs of the Weyl groups of Eg, E7, Eg are the
universal covers of the Cayley graphs of Og (2), Sps(2), Of (2), respectively.
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The subgroup complexes for finite groups
Satoshi Yoshiara
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Osaka Kyoiku University

1. The complex of p-radicals with p-constrained normalizers

In this report I am trying to reproduce my 20 minutes talk given at International Christian
University on July 17, 1997.

The aim of the report is to propose a mathematical definition for p-local geometry for
every finite group, which has been constructed for sporadic finite simple groups as an analogy
of buildings but in somewhat ad-hoc manner, and conversely starting from that definition to
determine the “local geometries” of the sporadic groups F3 and F; of Thompson and Harada
for which such geometries so far have not been found.

In the following G denotes a finite group and let p be a prime divisor of the order |G|.
A nontrivial p-subgroup P of G is called a p-radical subgroup whenever the largest p-normal
subgroup O,(Ng(P)) of its normalizer coincides with P. The set of p-radical subgroups of
G is denoted by B,(G).

BP(G) = {P | 1#P= OP(NG(P))}

The chains of p-radical subgroups (with respect to inclusion) form a simplicial complex
A(B,(G)). It is an important first step for verifying the celebrated Dade conjecture in
representation theory to determine the representatives of G-conjugacy classes of A(B,(G))
for each prime divisor of |G|.

When G is a Chevalley group defined over a field of characteristic p, it follows from
a theorem by Borel and Tits [BT],(BW] that B,(G) coincides with the set of unipotent
radicals of parabolic subgroups of G. Thus in this case the simplicial complex A(B,(G)) is
the barycentric division of the building associated with G.

In the conference given at Kyoto RIMS in December, 1998, I addressed the audience on
the importance of a minimal complex which is G-homotopy equivalent to A(B,(G)). Namely,
if G is a group of characteristic-p type !, every geometry known as a p-local geometry
can be obtained in this manner (See [SY]). Thus p-local geometries for simple groups of
characteristic-p type are in fact analogue’of buildings.

As S. D. Smith and I remarked at the end of that paper [SY], even when a group G
is not of characteristic-p type, it looks interesting to consider a smaller simplicial complex
A(B;™(G)) of chains of p-radical subgroups P whose normalizer Ng(P) is p-constrained 2 ,
not taking the whole p-radical groups.

! This is a notion generalizing Chievally groups defined on ficlds in chameteristic p. Formally a finite group
G is called of charucteristic-p type whenever the generalized Fitting subgroup F(Cg(z)) of the centralizer of
eadr clement z of order p is a p-group.

2 o finite group H is ealled p-construined if the full inverse immge Q of O(H{Op(H)) in H satisfics
CulO,(H/Oy(H))) € Q
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Note that for a group G of characteristic-p type we have B,(G) = B;™(G). Thus it
is natural to examine this subcomplex B;™(G) when one attempts to generalize the above
observation made in [SY]. Furthermore, the complex B;™(G) is much easier to handle when
we determine it by applying reccursive method.

Another reason why this complex is interesting is a recent result of Dwyer stating that
the modulo p cohomology group of G has the alternating decomposition on that complex
(see the last section of [SY]).

In this report, I furthermore claim that (minimal) complexes G-homotopy equivalent to
the complex B;™(G) are very much interesting geometries by illustrating with some exam-
ples. Namely, they can be thought of analogue of buildings. First we make the problem
clear.

Problem 1 For each finite simple group G and each prime divisor p of its order, find min-
imal complezes which are G-homotopy equivalent to the complex A(B;™(G)).

In the following I will describe results on some sporadic simple groups. I begin with
the sporadic simple group Suz found first by Michio Suzuki, according with the aim of the
conference.

2. The result for G = Suz and p=3

The maximal 3-local subgroups® of the sporadic simple group Suz of Suzuki are classified
by Wilson [Will] and I (thesis for master dgree). There are three classes of subgroups of G
of order 3, which are called 34, 3B and 3C, accoring to the increasing order of the orders of
the centralizers of representatives. The normalizers of representatives of classes 34 and 3C
are of the following shapes respectively:

Ng(34) 2 3.PSU4(3).2, Ng(3C) = (3%: 4 x Ag).2

Let A be a representative of the class 34, and let X be the largest normal 3-subgroup of
the normalizer of a representative of the class 3C. We have X £ 3% and each subgroup of X
order 3 belongs to the class 3C.

Elementary abelian groups of order 3% generated by two subgroups in 3A are conjugate
to each other, and among four subgroups of order 3 in such a 32-subgroup two belong to the
class 34 and the other belong to 3B. The normalizer of such a 3%-subgroup is a semidirect
product of a special subgroup U = 3?*! with a complement of shape 2(A44 x 2%).2.

No(U) = 3%+ (2(A, x 22).2), U =3,

That normalizer contains the normalizer of a representative of 3B. Furthermore, there is an
elementary abelian subgroup E of order 3° containing twelve subgroups in the class 34 with
normalizer a split extension of the Mathieu group M, by E.

b

maximal oue with repspect to inclusion amoug the 3-local subgroups, that is, the noramalizers of a
non-trivial J-subgronps
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NG(E) = 35 H Mu, E= 35.

It is known that the above four normalizers Ng(A), Ng(3C) = Ng(X), Ng(U) and Ng(E)
consist the complete set of representatives of maximal 3-local subgroups of G. Note that
among them Ng(3C) = Ng(X) is the unique maximal 3-local subgroup which is not 3-
constrained.

Next we will determine 3-radical subgroups using the above informations. In that process,
the following simple lemma is fundamental.

Lemma 1 (Lemma 1.9(2) in [SY]) If the normalizer of a p-radical subgroup P of a group
G is contained in a p-local subgroup; Ng(P) < Ng(U) for some p-subgroup U # 1, then either
P =U or P|U is a p-radical subgroup of Ng(U)/U.

Using this lemma and the classification of maximal 3-local subgroups menthioned above,
the problem to determine the 3-rdical groups of G = Suz can be reduced to those for smaller
groups Uy(3), Aq, My1; and Ag. Eventually we can get the following result.

Result 1 The 3-radical subgroups of the sporadic Suzuki group G = Suz form the following
stz conjugacy classes. Among them X is the unique representative with non-3-constrained
normalizer, and B5™(G) consists of the five classes other than the class of X.

A (a subgroup of order 3 in the class 3A), U =3, B= 3%,
X232, X,:=Xx2Z({U)=3% A Sylow subgroup S of G isomorphic to 3° : 32,

Taking suitable represenatives, we have the following inclusion relations among them.

ANPZEN

X

Thus the complex B3(G) of chains of them is of dimension 2 and each simplex has one
of the following 19 types.

(6 vertices) S, U, E, X, A, X:

(9 1-simplexes) (U, S), (E,S), (Xi1,S), (4,9),(X,9),
(Av U)» (A:E)| (A1X1)| (val):

(4 2-simplexes) (A4,U,S), (A, E,S), (4, X1,9), (X,X,,8):

We are now collapsing some simplexes in turn using the following fact.
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Lemma 2 (Lemma 2.1 in [RSY]) In a simplicial complex A with type, let T be a simplez
of codimension 1. Assume that there is a unique mazimal (with respect to inclusion) simplez
o containing 7. Then the process removing o and T from A (called collapsing) is a homotopy
equivalence.

Furthermore, assume that a group G acts on A preserving type. Then the process si-
multaneously removing all the simplices with the same type as ¢ and 7 is a G-homotopy
equivalence.

For example, we can verify that there is a unique (maximal) simplex of type (X, X}, S)
containing a simplex of type (X, S). Thus via collapsing A(B;(G)) is G-homotopy equivalent
to the subcomplex which is obtained by simultaneously removing all simplexes of these two
types. The latter subcomplex can be furthermore reduced by applying similar processes for
the simplexes of types (X;) and (X, X); (A4, S5) and (A, E, S); and (4, X)) and (4, X;, S).
In the resulting subcomplex there is a unique simplex of type (S, E) (which is maximal in
that complex) containing a simplex of type (S). Then by removing them we conclude that
the following complex A’ with simplexes of 9 types is G-equivalent to the original complex

A(B3(G))-
(4 vertices) U, E, A, X:
(4 1-simplexes) (U, S), (X,S), (A,U), (A, E):
(1 2-simplexes) (4,U,S):

To see the plausibility of the result (though this does not verify the correctness of the
result), we calculate the Buler characteristic x(A’) = x(A(B3(G))) (the alternating sum of
the numbers of simplexes of fixed dimensions). The result is x(A') = —37.67843, which is
certainly divisible by the 3-part 37 of |G] ¢

On the other hand, as for the 3-radical subgroups with 3-constrained normalizers, it
follows from the results above that A(B5™(G)) consists of simplices of the following 15

types.
(5 vertices) 4, U, E, X,, S:
(7 1-simplexes) (4,U), (4, E), (A4, X1), (4,5), (U,S), (E,S), (X1,5):
(3 2-simplexes) (A4,U,S), (4,E,S), (A, X1,5):

In A(B§™(G)), we note the uniqueness of simplexes of type (4, X), X) (resp. (4, E,S)
and (E, S)) containing a simplex of type (4, X)) (resp. (A, S) and (S)). Then via collapsing
A(Bz(G)) is G-homotopy equivalent to the following complex A”.

* The vertund £ [G]-module: defined as the alterating sum of the G-permutation modulos with simplexes
of A(B3(G)) of fixexl disnensions is projective, aud henee its character degroe, the Euler cineacteriatic, ix a
mudtiple of the p-part of |G
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(3 vertices) A, U, E:
(3 1-simplexes) (4,U), (A, E), (U,S):
(1 2-simplexes) (4,U, S):

As there is a unique conjugate of E which is a subgroup of S containing U, there is a one
to one correspondence between the simplex of type (S, U) and the chains of type (Z(U), E).
By the same reason the simplices of type (A, S,U) bijectively correspond to the chains of
type (A, Z(U), E). Hence the complex A" is nothing more than the complex £3(Suz) defined
as follows:

The vertices of £3(Suz) are the conjugates of A = 3, Z(U) = 3% and E 2¢ 3° (they can be
though of as the sets of mutually commuting one, two and twelve 3A-subgroups respectively),
and a simplex is defined to be the chains of them under inclusion.

This complex is called the 3-local geometry of the sporadic Suzuki group G = Suz, which
is a nice geometric object describing some feature of the group. For example, £3(Suz) admits
a flag-transitively action of G and belongs to the following diagram, in which the residue at
a ‘point’ A is a classical polar space associated with the 4-dimensional unitary space over
Fy. Moreover, its collinearity graph on 22, 880 points is a distance regular (in fact transitive)
graph of diameter 4.

1 9 3
A ZU) &

3. Results on the Thompson group G = F;

So far no good geometry have been obtained for the sporadic group Th = F3 of Thompson,
except for a 2-local geometry (see [SY, 2.14]). As I explained before, for each prime divisor
p of |G|, we have enough hope to find something nice by investigating simplicial complexes
which are G-homotopy equivalent to the complex of p-radical subgroups with p-constrained
normalizers. The results are described in this section. We obtain a natural 3-local geometry
L3(G) of dimension 2 for p = 3.

Complexes of dimension 0 and 1 (just a set or a graph) are not so much interesting to
me, so that I only consider the prime divisor p such that p* divides |G|. Thus p =2, 3 or 5.

p=2. It is known that G = Th is of characteristic-2 type, and hence By(G) = B5™(G).
Such a case was already treated in [SY, 2.14]° , and there it is shown that A(By(G)) is
G-homotopy equivalent to the following complex A of dimension 1.

The vertices of A consist of 24-elements and a conjugates of certain elementary abelain
group of order 2°, and the simplexes are their chains.

£ On this oceasion, I wonld like to point out a typo in that paper: the sentenee “The spaces ... 2-graps
Ks,.” in the 7th line from the hottom of Page 365 should be deleted.



p=3. The maximal 3-local subgroups of G are determined by Wilson [Wil2]. Using the
lemma described in the previous section, his results enable us to determine the 3-radical
subgroups.

Result 2 The complex B3(G) consists of the conjugacy classes of the following five subgroups
with the described structures of normalizers (under the ATLAS notation). In particular, A
is the unique representative with non-3-constrained normalizer.

A (3A-subgroup), U = (3% x 3!+2)31+2,
V = 3%37], E=3° (E contains 40 3B-subgroups and 81 3C-subgroups),
S, a Sylow 3-subgroup of G

NG(A) & (3 X G2(3)).2, NG(U) = NG(3B) =U:25,,
Ng(V) = Ng(3B?) = V.25, Ng(E) = Ng(3C) = (3 x 3% : SL,(9)) : 2,
Ng(S) == S : 22

Below I show the possible inclusion relations among representatives of 3-radical groups.
The Euler characteristic is calculated to be x(B3(G)) = 3'° - 13 - 92227.

N

U vV

AN

Then we find that B5™(G) consists of the following simplexes of nine types.

(4) E

(4 vertices) B, U, V, S:
(4 1-simplexes) (E,V), (E,S), (U,S), (V,S):
(1 2-simplexes) (E,V,S):

Now via collapsing based on the uniqueness of the simplexes of type (U, S) (resp. (E,V,S))
containing a simplex of type (U) (resp. (E,S)) the original complex B;™(G) is G-homotopy
equivalent to the subcomplex A’ of simplexes of types E, U, V, (E,V) and (V, S).

Observe that U is a unique conjugate of U containd in S and that Z(U) < Z(V) if (S,V)
is a simplex. Thus there is a bijective correspondence between the simplices of type (V, S)
and the pairs (U, V) with Z(U) C Z(V).

We define a complex L3(Th) as follows:
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Theree types of vertices:

the conjugates of Z(U) (they are 3B-subgroups), Z(V) = 3 (they are 3B-
pure® ) and E = 35,

simplexes are their chains under inclusion.

Then the above remark implies that £3(Th) is isomorphic to the subcomplex A" of Bi™(G)
consisting of simplices of types U, V, E, (V,S), (E,S), (V,E) and (E,V,S), where the
simplexes of type (V,S) (resp. (E,S) and (E,V,S)) correspond to the chains of type
(2(U), Z(V) (resp. (Z(U), E) and (Z(U), Z(V), E)).

Since in A" there is a unique simplex of type (E,V,S) containing a simplex of type
(E,S), the complex A" is G-homotopy equivalent to its subcomplex A’. Thus via A" we
establish the G-homotopy equivalence of L3(Th) with B5™(Th).

This property shows a mathematical significance of the geometry L3(Th) naturally de-
fined on some 3-subgroups generated by 3B-subgroups. My talk at ICU seems the first time
to give a definition of the geometry L£3(Th) and to show its analogy with buildings. It is
required to analize the properties of this geometry in detail.

The gemetry L3(Th) is of dimension 2 and admits a flag-transitive action of G. However,
as there is a unique simplex of type (Z(U), Z(V), E) containing (Z(U), E), this geometry
does not satisfy the residual connectedness which is usually assumed when one considers
geometries. Namely, Z(V) can be thought of as a 2-dimensional space over F3 with the
structure of a 1-dimensional vector space over Fy, while Z(U) is just a vector of Z(V)
considered as a space over Fj.

It may be worthwile to mention that the situation is quite similar to the 2-local geometry
Ly(J3) for the J3. In this case, £3(J3) is of dimension 2 admitting a flag-transitive action of
Js, and it is J3-homotopy equivalent to A(B;(J3)) (in fact J3 is of characteristic-2 type [SY,
2.11]). However it does not satisfy the residual connectedness (see [Yo, §2] for the details of
Lo(Ja)).

The Euler characteristic is calculated as x(B5™(Th)) = —3°-10987- 11681, which implies
that it has ‘defect’ 1.

p=5. We have |G|; = 5° and Bs(G) = B:™(G). The complex A(Bs(G)) itself is nothing
more than the complex of dimension 1 consisting of chains of 5A-subgroups and 5A-pure
52-subgroups.

4. Results for the Harada’s group G = F;

I also investigated complexes homotopy equivalent to the complex of p-radical groups with
p-constrained normalizers for the sporadic simple group F; for which no good geometries
so far have been found. For the odd primes, I only found complexes of dimension 1, which
seem not so much interesting. As for p = 2, the analysis has not yet completed. So I briefly
report the result only for » = 3 and 5.

% that is, every subgroup of order 3 lies in the clws 38
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p=5. The complex Bs(G) consists of the following four classes, where 54 and 5B are
‘subgroups generated by the 54 and 5B elements under the ATLAS notation.

5A, U := O5(Ng(5B)) = 5!+, V := Og(Ng(V)) = 52, S: a Sylow 5-subgroup

The possible maximal chains are of types (4, U, S) and (V, S), and the Euler characteristic is
x(A(Bs(G))) = —5°- 929 - 1049. Except 54, all 5-radical groups have 5-constrained normal-
izers and it is easy to see that A(B™(G)) is G-homotopy equivalent to the complex As(G)
of chains of 5B-subgroups and 5B-pure 52-subgroups, which has the Euler characteristic
x(A(BE™(G))) = —5°- 17 - 41- 773.

p=3. The complex B3(G) consists of the following five conjugacy classes, where 34 and

3B are subgroups generated by the 34 and 3B elements under the ATLAS notation.

34, a 3A-pure 3%-subgroup, O3(Ng(3B)) = 3'+4,
a 3B-pure 3%-subgroup, S: a Sylow 3-subgroup

Their normalizers are 3-constrained except for 34 and a 3A4-pure 3%-subgroup. It is easy tosee
that A(B5™(G)) is G-homotopy equivalent to the complex A3(G) of chains of 3B-subgroups
and 3B-pure 3'-subgroups with the Euler characteristic x(A (B$™(G))) = —31 - 48405321.
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1 Introduction

In 1980, the first year of the age of
post classification, I published in a
Japanese article a project after cla | Finite Group Theory!
ssification, that is, the categorifica-
tion of finite group theory.

The first step of our project is to Fiategory of finite G—sets|
rewrite finite group theory by us-
ing the language of categories of G- !
sets. For example, if f : G — H |Eeneral Set-like Categories|
is a group homomorphism, then it
induces a triple of adjoint functor

i:“;'“"ed essential geometric func- [Special Set-like Categories|
r

A graphs, forests, S-sets, arrow sets
1

Fig 1: Project
Set/8 —f— Set ¥ ig 1: Our Projec
Q_J"—

3
Since the finite group G is the automorphism group of a unique projective indecomposamble
G-set, there is no loss in such a rewriting,

The category of finite G-sets is very like the category of finite sets. Thus the second step is
to gencralize the categorified finite group theory to a general theory of some set-like categories.
The final step is to apply the gencral theory obtained by such a way to some special set-like
categories. In this article, we start at Wohlfahrt's formula

. |Hom(A, Sa)l... {4:8)
Zl_on%l!__)lt =cxp(2 '(TT)),

n=0

where Hom(A, S,,) denotes the sct of homomorphisms from a finitely generated group A to a
symmetric group Sy, and B runs over all subgroup of A of finite index; and then we try to build
an abstract theory of generating functions whose exponents belongs to a set-like category.
Here, note that there are two kinds of mathematical theories based on a set-like category,
that is, internal theories and external theories. As a simplest example, we take the theory of
natural numbers. The internal natural number object inside the category of sets is just defined
by Peano’s axiom, and of course it belongs to the category of sets. On the contrary, there are



some external definitions of the set of natural numbers; due to Dedekind and Russel the set of
natural numbers is the set of isomorphism classes of the category of finite sets (or finjte ordinals);
thus the external set of natural numbers does not belongs to the category of finite sets.

Let's consider some internal and external definitions based on the category of G-sets and
finite G-sets. In the category G-scts, an internal concept of sets is that of G-sets; similarly, an
internal vector space is a G-module, and an internal group is a group with G-action. An internal
map between internal sets is simply a map between G-sets which is not necessarily a G-map; on
the other hand, an external map between two G-gets is a G-map; thus the internal Hom-set is a
G-set YX = Hom(X,Y) with G-action defined by 7A(z) = gA(g~'y) and the external Hom-set
is the sct Mapg(X,Y) of G-maps. The internal power set 2% of a G-set X is the G-set of all
subsets of X; the external power set Subg(X) of a G-set X is the set of G-subsets. I feel that an
internal theory in the category of G-scts is too difficult to develop and often falls into abstract
nonsense in general.

According to Dedekind and Russel the external set of natural numbers is the set of isomor-
phism classes of finite G-sets. The external ring of integers is the Grothendieck ring of external
natural numbers, that is, the Burnside ring of the finite group G. An internal matrix is a map
from X xY to a G-algebra A; contrarily, an external positive matrix is a G-map from X xY to A;
in fact, when the group G is trivial, we can identify such a map A — X x Y;a — (I(c),r(a))
with a usual positive integral matrix as follows:

X A -Y)e— (I E@)Nr iz e X,y €Y.

Furthermore, an external vector space is a Mackey functor (or Green's G-functor), an external
G-algebra is a Green functor, an external commutative ring is a Tambara functor, that is, a
Mackey functor with multiplicative transfer. One question is what an external polynomial ring
and the ring of power series.

Theories Internal Theories External Theories
Natural numbers NV N Set!G/ &
Ring of integers 2 VA Burnside ring B(E)
Hom-set YX := Map(X,Y) Mapg(X,Y)
Power set 2X Subg(X)
Matrix ring AXXY Xe—A->Y
Vector space G-modules Mackey functor
Ring G-algebras Green functor
Commutative ring commutative G-algebra Tambara functor
Polynomial ring Z[Y) Z|(Set €)oP/ =]
lim B(Set;S/2V)
Ring of power scries Z[[1) Z[[(Set,%)°r/ =)
lim B(Set;/2")

2 Exponential functions

Let £ be a category in which every hom-set is a finite set and whose isomorphism classes £/ &
make a set. Such a category is often called a skeletally small and locally finite category. A
polynomial (resp. power series) with exponents in £ is a finite (resp. infinite) sum

Z'axtx,

Xet
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where the summation is taken over isomorphism classes of objects of £, the coefficient ax is in a
commutative ring R and tX denotes a variable corresponding to X € £ satisfying the condition

Xy — tx = tY.
The ezponential generating function E(t) associated to £ is defined by a formal infinite
summation: , 1
— x
E0 =2 mmoon

Xet

Let F : £ — S be a functor between skeletally small and locally finite categories. Assume
that F has locally finite fibbers:

|[F~Y(N)/ 2| =H{X € £/ | F(X) = N} < oo.

Then we define a power serics

F, (Zlaxtx) = Z’axtﬂx)

Xe€ XeE

Z' Z' cx tv,

NES \ F(X)y=N

!

In particular, we put

1
F(t):=F(£) =Y e
€)= £, TAut(X)|

Let F : £ — & be a faithful functor with finite fibers between skeletally small and locally
finite categories. then an E-structure along F over N € § is a pair (X,0) of X € £ and an
isomorphism ¢ : F(X )ioN . Two &E-structures (X,0),(Y,7) are isomorphic if there exists an
isomorphism f : X —2,Y such that the following diagram is commutative:

Foo) LY, poyy
(4
f
N

The isomorphism o : F(X) — N is called a labeling/ and N is called a label set. We denote
by Str(€/N) the set of £-structures on N.

Example: Let F : Graph — Set; be the forgetful functor from the category of (simple) graphs
to the category of finite sets. Then an isomorphism class of £-structures on N is bijectively
correspondent to a labeled graphs on N.

Theorem: Under the above notation,

e P |Str(E/N)/ |
FO=3 (o) = 2 e,

Example Let G be a finitely generated group, Set € the category of finite G-sets, and F :
Set;C — Set; the forgetful functor. Then there is a bijection

Str(Set;C/N)/ 22— Hom(G, S,),
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and so

v # ® Hom(G,5,)]
FO=2 mmmy =2 !

Example: Let Gp be the category of finite groups and F : Gp — Set; the forgetful functor.
Then

—_ ,_dlel _ = nnjpn n
FO=2 Fa@ =2 b

where py, is the probability that a binary operation on [n)(:= {1,2,...,n}) makes [n] a group.

3 Exponential formulas

Assume that the skeletally small and locally fnite category £ has any finite coproducts. Then
the isomorphism classes £°P/ & of the dual category make a multiplicative monoid. We denote
by X the element of £°P / & corresponding to X € £, s0 that the multiplication is defined by

XY =X 0o
{0 denotes an initial object). Thus we can define the polynomial ring as the semi-group algebra
Rpol(€) := R[€°P/ =]. Furthermore, the ring of power series is defined to be the complete

semi-group algebra Rpow(£) := R[[E°P/ =]; if £ satisfies the following condition, then the
multiplication on the ring of power series is well-defined:

(A) §{(A,B)|A,BEE,A+ B X}/ = < oofor any X € £.
An object I # @ of £ is connected if

I2A4+B = A=Qor B0

The full subcategory of connected objects is denoted by Con(€). A category £ with any finite
coproducts is called a strict KS-category if any object X € £ has a unique coproduct decompo-
sition

Xeh+--+1, I,€Con(f).

Here the uniqueness means that if X & J; + -« + Jy,, then m = n and there exists a unique
permutation 7 € S, and isomorphisms f, : Io—J5(a) (@ =1,...,n) such that

Is —=— Jia)
Ta

Px(a)
X

is commutative, where 74 : Io — X and pg: Jg — X denote canonical injections.

Theorem (Exponentizl formula): Let £ be o skeletally small and locally finite KS-category
satisfying the condition (A). Then

E(t) = exp(Con(£)(2)).
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Corollary: Assume, furthermore, that a skeletally small and locally finite category S has any
finite coproducts and setisfies the condition (A). Let F : £ — S be a faithful functor with finite
fibbers which preserving coproducts. Then

1|Ste(E/NY] =2\ n 1 |Str(Con(€)/N)/ & |
o Thuw LT (% Rl ¢ )

Example: Let Surj be the category of surjections of finite sets, that is, an object is defined to be
a surjection A; —» Ag between finite sets Ag, A; and a morphism is defined by a commutative
diagram

Ay B

Ag By.
An object Ay —=» Aq is connected if and only if Ag is a one-point set, and so
J(n) = ([n] —[1]), n=1,2,...
are complete representatives of isomorphism classes of connected objects, where
] :={1,2,...}, [0] :=0.
Then the exponential formula gives the following identity:

A Yn n Al it"
Z',Tt =cxp(zj'3! ),

n=0 """ i=]

Y, ;=ZL(%)"'_,_(%)N"'

&l

Here we put fg;t' := t(). The polynomial Y, in f, g1, g2, ... is the Bell polynomial.
Applying the forgetful functor

F : Surj — Sety; (A — Ag) — A,

to the above formula, we have another famous formula for Bell numbers:

Y %';)t" = exp(e’ — 1),

n=0

where 5(n) denotes the Bell number, that is, the number of equivalence relation on [n). This
formula follows from the fact that

|Ste(Suej/[n])/ = | = b(n).

Example: Let G be a finitely generated group and F : Set,a — Set; the forgetful functor.
‘Then there is a bijection

Str(Set/S/[n]))/ & «—— Hom(G,S,).
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In fact,if 7 : G — S, i ls a group homomorphism, then [r] becomes a G-sct by g-1:==x(9)(z),
and so ([n},id) is a Set; G _gtructure over [n] along F; conversely, given a Set, -structure (X, o),
we have a homomorphism 7 € Hom(G, S,) defined by #(9)(i) = o(g - =1 (5)). Thus we have

— tF(X) IHom(G S..)|
F@): z:|Aul:()() "2__;)

Furthermore, we have
tG, H

Con(SetjG)(t) = E'm

G/H
tG,"

2 (G: H),

H<G

where H runs over all subgroup of G of finite index. Thus our exponential formula implies the

Wohlfahrt formula:
(G:H)
2 |Hom(G Sn)l = exp 2 é v |-
n=0 H<G (G: H),
This formula is applied to enumerate the solutions of a system of equations on a symmetric
group. This formula is also useful to enumerate the numbers of subgroups of given inde of a free
group and the modular group SL2(Z).

Example: A (binary linear) code is a pair (¥, C) of a finite set N and a subspace C of FY :=
{(vi)ien | vi €)}. The set N is the sct of coordinates. A morphlsm f:(M,C) — (N,D)
between codes is a map f : M — N such that

f.(C) € D, where
fo:FY —FY; (w)ies — ( > “-') .
i€fG) / jen
A self-dual code is a code (N, C) with CL = C, where
C* = {(vidien € FY | 3 wivi =0}.
iEN
We study the KS-category sdCode of self-dual codes and the faithful functor

F :3dCode — Sety; (N,C)+— N.

Then an isomorphism class of sdCode-structures over [n] is viewed as a self-dual code in F3,
and so we have (Str(sdCod /[ D/

tr(sdCode/[n])/ & Gn 0

FO =% "= Z =5

n=0 n=0

where as is well-known, the number e, of such self-dual codes is given as follows:

n-}
a0 = 1,a0n = [] (2 +1), aons1 =0.
i=l
In particular, f(t) satisfics the equation

(1) = f(V2t) + f(t) - 1.
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Similarly, definc the generating functions for the number of connccted self-dual codes as
follows:

o) = i |Str(Con(sdCode)/[n])/ & o _ i b_,:tn.

nl

n=0 n=0 """

Then the exponential formula gives

1(t) = exp(g(1)), 9(t) = log(f(2))-
Thus we have the following recurrence formula for n > 1:
Z (n) an-ib; — Z (n) a,._.-_J-b.-bj = (2"/2 + 1)a,.
i=o \? ig=1 \bJ

Using this recurrence formula, we can calculate by, by, bg, . . ..

4 Operations on categories and functors

There are many operations on polynomials and power series; for example, f(t)+ g(t), f(2)-9(2),
f(g(2)), df(t)/dt. We can construct the corresponding operations on categories and functors. Let
£ and S be a skeletally small and locally finite category with any finite coproducts; furthermore,
let S,T,... denote faithful functors with finite fibers.

(1) Summations. ot
(ES48) + (FTa8) = (£ 4+ F ——s8),

where £ + F is the disjoint union of categories and the functor S+ T is equal to S on £ and to
T on F. Furthermore, we have that (S + T)(t) = S(t) + T(t)-
(2) Multiplications.

(E-248) - (FLu8) = (€ x F ———8),
where (S-T)(X,Y):=8(X)+T().
Then we have (S - T')(t) = S(t) - T(¢).
(3) Derivations.
(E-S4Sety)’ = (Elts(S)-set)),

where Elts(S) is the category of clements, that is, an object has the form (X,s), X € £ and
3 € S(X), and a morphism f : (X,s) — (Y,t) is a morphism f : X — Y in £ such that
S(f)(s) = t; furthermore, the functor S’ : Elts(S) — Set; is defined by S'(X, 5) := S(X) - {s}.
Then we have that §’(t) = dS(t)/dt. Furthermore, Leibniz’s rule holds:

(S-TY=S-T+S-T.

(4) Partial derivations. For a functor S : £ — S and an object I of £, the comma category
I1 8 has pairs (I——S(X), X), where X € £, as objects and a morphism from (a, X) to (8,Y)
is a morphism f : X — Y such that S(f) oa = 8. We write 3;(S) for I 1 S. Then the
derivation at I is defined by the functor

81(8) : 01(€) — S; (@, X) — S(X).
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The generating function of 97(S) is given by

¢ [Hom(L, SO x|

o) = L s

Xef

If the Hom-functor Hom(I, —) preserves finite coproducts (e.g., € is a topos and I is a connected
object), then Leibniz’s rule holds:

(S - T)x8(S) T+ S:8/(T).

(5) it Exponentials. Let C be any category. Then the exponential EXP(C) is the category of
pairs (M,Y) of a finite set N and a functor Y : M — C, where M is viewed as a discrete
category; a morphism (f,7) : (M, X) — (N,Y) consists of a map f: M — N and a natural
transformation 7 : X — Y o f; the composition is defined by

@.p)o(fim):=(g0 f,(p*f)oT),

where p * f denotes the vertical compaosition.
The category EXP(C) is a strict KS-category and its connected objects are bijectively corre-
sponding with objects of C:
Con(EXP(C)) & C.

If S is a category with finite coproducts, then any functor F : C — S can be uniquely extended
to a functor
Exp(F): EXP(C) — S; (N,Y) — H F(Y)).
iEN
Assume that C is skelctally small and locally finite. Then we have

EXP(C)(t) = exp(C(t)).

Assume furthermore that the functor 7 : C — & has finite fibers and that S has any finite
products. Then we have
(EXP(F))(1) = exp(F(2)).

(6) Substitution. Let S be a category with finite coproducts. For two functors S : £ — Set;
and T : F — &,the substitution (or composition) is constructed as follows: First define a
category S(F) by the pullback diagram:

S(F) £

P.B. S

ExP(F) "22K. set,,

where the functor rank is defined by (N,Y) — N. Now the functor S(T) is defined by the
composition:

S(T) : S(F) — EXP(F) —2PD s,

x.¥)— [I T(%)
a€S(X)
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If the generating functions are well-defined, then we have

(S(T))(2) = S(T(1)).

Furthermore, under the condition that Hom(I, ~) preserves coproducts and that £ is a set-like
category, we have
9/(S(T)) = §'(T) - 81(T).

Example. An arrow set (X, a), simply X, consists of a finite set X and a map a: X — X;
a morphism f : (X, a) — (Y, 8) between arrow setsisamap f: X — Y with foa=80of;
we denote by ASet, the category of finite arrow sets. A cyclic set is a finite set X with a
permutation 7 on X, that is, a finite C-set, where C is an infinite cyclic group; the category
of finite cyclic sets is denoted by Setlc. A rooted forest ia a disjoint union of finite number of
rooted trees; the category of rooted tree (resp. rooted forests) is denoted by RTree (RForest).

A root of an arrow set (X, a) is an element z € X such that a’(z) = z for some i > 1; then the
set R(X, @) of roots of (X, a) forms a finite cyclic set with permutation a. Furthermore, we can
make a rooted forest F(X, &) with roots R(X, @) by connecting z and a(z) for 2 € X -~ R(X, a).
Thus we have the following commutative diagram:

ASet; 2. Set ¢
P P.B. S
RTree —— RForest ﬂ- Set

T
T

Set/
where S : Se\‘.,c — Sety is the forgetful functor, root : RForest — Set; is the functor which
assigns the set of roots to each rooted forest, T : RTree — Set; and 1" : RForest — Set; are

the forgetful functors. Clearly, RForest & EXP(RTree) and 7V & EXP(T). Thus we have that
S(RTree) & ASet; and that

S(T) : ASet;—\RFarest ——Set,

is equal to the forgetful functor.

Now since
Str(ASet;/N) «— Map(N,N),
we have © _n
(SEN@ =Y e
n=0

Using Wohlfahrt's formula (or counting the number of Set /c-atructurcs on [n] along S), we have

S(t) = exp (i %) = Ti—t-

n=1
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Let uy be the number of labeled rooted trees on [n], so that

[- -]
. _ Uy
u(t) :=T(t) = n}; T
Hence
ST =3 T 1
(8(T))( )—Z%Et =T=u®
Now, using the Cayley’s formula 1, = n®~!, we have the following intcresting formula:
i n" 1
—" =
= R Sy
= n!

This formula directly follows from Abel’s formula

2 (:)($+k)k_l(y+n_ Ky k = (z+y+n)" - (y+n)n'

k=1 z

5 Toposes

Now, we first explain the necessity of new definitions of polynomials and power series in order
to do substitution and composition without restriction. Let £ be a skeletally small and locally
finite category with any finite coproducts and R a commutative (topological) ring. If we need
to consider power scrics, we assume that the following condition holds:

(A)§{(A,B)|A,BeE,A+B2 X} /2 < coforany X € €.

As stated belfore, a polynomial (resp. power series) is a finite (resp. infinite) summation of
the form:

10 =Y"ext*, axeRr
XeE

Thus the rings of polynomial and power series are the (complete) semi-group algebras:

Rpol(€)
Rpow(€)

R[e*®/ =]
R[e°P/ =]

The multiplication is defined by the linear extension of

tX .Y =X =

This definition of polynomials (and power series) has two faults as follows:

(1) We can not define the substitutions. What should we substitute for the variable t in f(t)
? What should we interpret the values, e.g., 2X, (=1)X ? Of course, when £ = Sets, we can
substitute any element of R for ¢ under the identification tinl = ¢n,

(2) We can not define the compositions g(f(t)). For example, what does (1 4 tX)¥ mean ?

In order to solve these two problems, we need the notion of toposes. A category £ is called a
topos if the following four conditions hold:
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(T1) € has all finite limits, e.g., products X x Y, a terminal object 1, pullbacks.

(T1’) € has all finite colimits, e.g., coproducts X +Y', an initial object .

(T2) € is cartesian closed, that is, for any object A of £, the functor (-) x A: X — X x 4
has a right adjoint (an exponentiation):

(=)A€ — & X — XA
Thus there is a natural bijection:

Hom(X x A,Y) = Hom(X,Y*).

(T3) € has a subobject classifier 1—'»Q, that is, for any monomorphism A »— X, there exists
a unique x4 : X — ¢ with a pullback diagram:

A 1
PB. |t
x—XA__.q

Example. (a) Set (the category of sets) and SetG (the category of G-sets on a group G) are
both toposes. The exponentiation YX = Map(X,Y) is the set of maps from X to Y with G-
action JA\(z) = gA(g~'z); the subobject classifier 2 = {0,1}, the two element set, and x4 is the
characteristic map of A C X.

(b) Shv(X), the category of sheaves of scts on a topological space X, is a topos.

(c) C(T), the category of sets under higher order intuitional logic. Any topos is equivalent to a
topos of this type. Thus a topos is a category of generalized sets, and so we can prove statements
on a topos as if the topos is the category of sets. However, in this category, the axiom of choice
does not hold and the (external) power set Sub(X) is not a Boolean lattice.

(d) SetT, the functor category, is a topos; furthermore, the category Shv(T', J) of J-sheaves with
respect to a Grothendieck topology J.

We are interested only in locally finite topos, that is, a topos in which each hom-set Hom(X,Y')
is a finite set. A locally finite topos is a strict KS-category.

Example. (a) Sety (the category of finite sets) is a locally finite topos.

(b) SetS (the category of finite G-sets on a group G) is a locally finite toposes. In particular, so
is Set;“ (the category of finite cyclic sets). Here a cyclic set is a set equipped with a permutation.
(c) ASet; (the category of finite arrow sets) is not a locally finite topos. Here an arrow set is
a set X equipped with a map into itself. However, this category provides all what we need to
develop the theory of generating functions.

(d) Set ,r (the functor category) is a locally finite topos if I' is a finite category.

(c¢) DGraph (the category of finite di-graphs) is a locally finite topos; in fact, it is the functor
category from the category (- 3 -).

(f) Surj (the category of surjections between finite sets) is a locally finite toposes.

(g) RForesty; .. (the category of rooted forests of height at most n) is a locally finite topos.
RForest (the category of rooted forests) is not a locally finite topos.

After this, £ denotes a skeletally small and locally finite topos. Then we can regard the set
N(E) := £/ = of isomorphism classes of objects of £ as an external set of natural numbers.
Because of cartesian closeness, we have

(X+Y)xZ2XxZ+Y %2, 0xZ2=0,
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and so N(€) forms a semi-ring. Furthermore, N(£) has exponentiations Y X satisfying the usual
exponential laws:

(XxY) XA xyA 14,
XMBoe XAy xB xO0e¢y
xAxB (Y (XA)B' xl e X,

N(€) has a poset structure, ¢.g., by the following way:
X<Y ¢ Xa—Ar—Y

for some object A. Unfortunately, the ordered semigroup N(£) is not a totally ordered set in
gencral.

6 The Burnside ring of a locally finite topos

Let £ be a skeletally small and locally finite topos. Then the Burnside ring B(€) of £ is the
Grothendieck ring of € with respect to coproducts and products, and so it is the abelian group
generated by £/ & with fundamental relation:

[X+Y]=(X]+[¥], (0]=0.
The multiplication on B(€) is defined by
(X]-[¥]= (X x Y]

The Burnside ring B(€) is a frec abelian group on Con(£)/ &, where Con(€) is the full
subcategory of connected objects. The ghost ring Gh(E) is the ring of maps from Con(€)/ & to
Z with pointwise multiplication; we often identify the ghost ring with the product ring of some
copies of Z. There is a so-called Burnside homomorphism:

¢:=(p1); : B(E) — Gh(E)
i [X]+— (|Hom(Z, X)])s
Then ¢ is an injective ring homomorphism. Thus we can regard the Burnside ring as a subring
of the ghost ring which is equipped with the product topology of the discrete ring Z. The

completion of B() is called a complete Burnside ring and is denoted by £3(€); the Burnside
homomorphism can be extended to the ring homomorphism & on the complete Burnside ring.

Fundamental Theorem. The complete Burnside homomorphism ¢ is an injective ring homo-
morphism and there is an ezact sequence as follows:

0 — §(€) —ath(e) —"’—»H(Z/|Aut(1)|2) — 0,
f

where I runs over Con(£)/ &.

The lincar map ¥ is called the Cauchy-Frobenius map and is constructed as follows:

'ﬁ:(x(I))n—'(- > x(I/v)) )
'

ceAut(f)

where I'/o is the coequalizer of 1,0 : I — I.
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7 Substitutions

Let

f) =" cat” € Rpol(€)
A€€

be a polynomial with exponents in £. Then for any object X € £, we define the evaluation at
X by
(F11XD ==Y calHom(4, X)|.

A€g
Define the integers ny(A) (I € Con(£), A € £) by

A H'n](A)I.
I

where I runs over Con(€)/ . Then clearly we have

Hom(A, X) & H' Hom(!, x)'u(A)_
I

Furthermore, for any I € Con(£),

Hom(I, X) & [] ' ns(X)Hom(Z, J),
J
where J runs over connected objects of £. Note that if I is a connected of a topos, then

Hom(I, ~) preserves finite coproducts. Thus we can extend the evaluation of f(t) to R® B(€)
and to R® Gh(€):

ni(A)
AL Y el (}:’ |Hom(1,1)|=,) , ZJER
J J

A€t I
10 = '] 00™D, 0¢R®Gh(E),
A€ I

where I,J runs over Con(£)/ £. :
If R is a torsion free, then we have an injective R-algebra homomorphism

eval: R[E°P [ ] — pol(R ® B(E)).

We next study the substitution of elements of the Burnside ring and the ghost ring. For any
polynomial

1ty =" cat? € Rpol(€)
AgE

and any clement § € R® Gh(£), we define the substitution of § by
@) = (f(6n))s,
(f6r) = Y. caT] 6()net1x®

A€l J
= Y'ea I] 00,
A€ JlIxA

where I, J runs over Con(€)/ & and the notation J|I x A means that J is a connected subobject
of I x A. Thus we have a (polynomial) map:

subst; : R® Gh(E) — R® Gh(£)
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In particular, restricting the substitution of elements of the ghost ring to those of the Burnside

ring, we have
Selx]) = 3" ealX4]
Ae&
Clearly,
f@h ={f]8).
Furthermore, if we write

ey =3 eat™4,

A€E
then

10r=1{"6)

Theorem. If R = Z R zp,Q,R, then the substitution of elements of the Burnside ring gives a
map:
substy : R® Q) — RO Q(E); z +— f(z).

8 Plethysm composition

We next define a so-called plethysm composition (g o f)(t) of polynomials and power series.
Lemma. (1) Assume that the topos £ satisfies the following condition:
(a) I,J € Con(€) = I xJEe€ Con(€).

Then for any polynomial f(t),g(t) € Rpol(£), there exists a unique {g o f)(t) € Rpol(£) such
that
(90 £)(0) = g(f(8)), for all # € R® Gh(E).

(2) Assume the above condition (o) end the following condition:
(b)) Hom(1,X)=0 = X=0.

Then the composition (go f)(1) is defined for power series f(t), g(t) € Rpow(E) such that f(0) =
0.

Example. Let £ = Surj be the category of surjections between finite sets. Then a connected
object of Surj is isomorphic to J(n) = ([n] —= [1]). Since

J(m) x J(n) = J(mn),

the condition (a) holds. Furthermore, (b) also holds clearly. Then a power scries f(t) € Qpol(€)
has the form

ft) = Zc,.t". =il
M

where ¢; := t/() and g = 1M12#2...  Let g(t) = t/(®) = t,. Then the composition (g o g)(t)
defined in the above lemma is presented as follows:

(9o N =) cuthithathn .
M

The composition of this type is nothing but the classical plethysm compaosition.
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9 New definitions of polynomials and power series

Le £ denote a skeletally small and locally finite topos, and R a (topological) commutative ring.
Let Eqon be the dense subcategory of £ in which every morphism is a monomorphism. For
an object X € £, a comma category £/X is defined as a category whose object has the form
A — X and in which a morphism from A-——X to BLX is a morphism f : A — B with
fof = a Then the comma category £/X of a topos £ is also a topos. The fundamental
theorem of toposes implies that for each morphism f : X — Y, there is a triplet of adjoint
functors as follows:

Xy

£/X — ji"— €)Y,

1,
where the functors Iy, f* are defined by

2 : (A— X)r— (4A— x-Liy)
I* 2 (B—Y)— (X xy BEY)
For an object N € €, we views R® B(€ /Q" ) as the R-module of R-polynomials of degree

at most N. Each monomorphism i : M — N of £ induces a monomorphism 3; : Q4 — QN
and then a pair of adjoint functors:

E3;
E/oM L L e/aN.
XERR

Since these functors preserve coproducts, they furthermore induce a pair of an injective R-linear
map and a surjective R-linear map:

Ty, : RB(E)E/QM) — RB(E)(E/QN),
(3" : RB(E)E/QY) —- RB(E)E/QM).

Taking the (co-)limits over £0n, we have the R-module of polynomials and that of power
series:

RPol(€) := limR® B(/QV)
RPow(€) := lim R® B(£/aY).

The degree of a polynomial F € RPol(£) is defined to be a unique (up to isomorphism) minimal
object D € £ with the property F € R® B(£/QP).

Example. Let £ = Sety, so that = 2 = {0,1}. We identify the exponentiation 2N with the
power set {X C N}. Then the map A——2¥ is corresponding to the integral polynomial

Ytk e Z[i).
a€A

In order to define the substitution, we nced a notion from topes theory. The partial map
classifiers X of an object X of a topos is defined by using the Mitchell-Bénabou language:

X:={YyeqX|vVzeX(zeY =Y ={(z})},
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that is, X is the set of 'at most one element set’. Then X is a subobject of X with injection
n: X — X. Furthermore, n: X — X is characterized by the property that if A 2 A’ Lx
is a partial map from A to X, then there exists a unique f such that the following diagram is a
pullback diagram:

A / X
P.B. Ul
a—1 . %

In particular, (1 — 1) = (1-59). The assignment X — X is functorial.
We can now define a substitution. Let X be an object of the locally finite topos £. For any
morphism s : F — QV, define an object F[X] by

FIX] F
P.B. 3
Xxn v,

Taking the colimits, we have the substitution map
substy : RPol(£) — R® B(£).
The substitution X — F[X] can be extend to R ® B(£), and so we have a map

subst : RPol(€) x R® B(£) — R® B(£)
i (F,z) — F(z).

We can also substitute an element of the ghost ring.

10 Operations on polynomials and power series

The summation of polynomials and power series comes from the R-module structures of R Pol(€)
and RPow(€).
The multiplication is induces by

[F=QM] . [G-10N] := [F x G ———QM x QN o QM+N),
This operation is bilinear with respect to coproducts, and so we have an R-binincar map
RQE/OM) x R QE/AY) — R Q(E/QMTN)

Taking the (co-)limits on Epon, we have the multiplications on RPol(€) and R Pow(£).
We next define the composition of polynomials and power series. Take two morphisms

(F—IoQM ) and (G-2+9¥) which are regarded as polynomials of degree as ost M, resp. N. Let
§: N xG — Q be the the adjoint of g : G — QM and R, the subobject of N x G with
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characteristic map §. We denote by G* the pullback functor £ — £/G, and by E¢ (resp. Ilg)
the left (resp. right) adjoint functor of G*. We now define the composition by

Go F :=E¢((F x GE:G)Rs—F),
accompanied with a morphism G o F — QM*¥ which is the adjunction of
(FxG— G)(R,—G) _I,(G-(QM))(R,—'G) .i.G-(QMxN) = (QMxN x G — G)

induced by the inclusion s : Ry — N x G.

11 Application to error correcting codes with group action

Let F :=F, be a g-clement ficld and G a finite group. For a finite G-sct N, F¥ denotes the
P-vector space of maps from N to F, whose element v : 1 — v; we often write as (v;)ien; the
right G-action on F¥ is defined by (vg); := vy forallu € F¥,i € N, g€ G,andso FN is a
righta FG-module. The FG-module FV has a G-invariant inner product

u-vi= Zu.-v.-.

ieN
The support and weight of an element v of FN is defined by
supp(v) ;={i€ N |v; #0} C N
Jol := wi(u) := Jsupp(o).

A G-code (N, C) consists of a finite G-set N and an FG-submodule C of FN. The dual code
of C is defined by
L:={veFN|u.v=0 forallueC).

Then dimC+ = |[N| - dim C. Remember that the weight enumerator of C is defined by

we(z,y) = Y z" My, (n:=|N)).
ueéC

We can now regard the support map supp : C — 2V as an element of Z Pol(Set IG) Since
Setf is Boolean, it is convenient to consider homogeneous polynomials instead of polynomials
in one variable; we define the equivariant homogeneous weight enumerator W¢|X,Y] by the
following pullback diagram:

WelX, Y] ——C
P.B. supp
(X+Y)N — 2¥,

where (X 4+ Y)¥ — 2V is defined by p+— p~!(Y). By an easy calculation, we have

IWelX,Y]| = we(z,p) = 3 z"Hlyll,
ueC

and 8o our equivariant weight enumerator Wo[X,Y] is a generalization of the classical one.

270



Since (X,Y) — Wc[X,Y] is polynomial in X,Y, it can be extended to a map on B(G) x
B(G), where B(G) = B(Set;") is the Burnside ring of G.

Equivariant MacWilliams identity. Assume that (g,|G|) = 1. Then for any z,y € B(G),
[Clx Woslz,y] = Welz + 9y, 2 — 3.

This theorem is proved by the following way. The detail is found in [Yos 93]. We put
V := F¥_ For any subset R C N and any subspace D C V, define subspaces as follows:

V(R) := {v€V|supp(v)C R},
D(R) = DNV(R).

Then there is an exact sequence:
0— CL(R) 5 v(R) Lo = oW -R) —0,

where C* is the dual space and
J:vr— (ur— u-v)
The assignments R — C*(R),V(R),C*,C(N — R)* are rcpreesntations of the Boolean
algebra 2¥ with G-action, and so the above exact sequence can be viewd as an exact sequence

in the functor category [(2¥) - G, VectF], where in the category (2¥) - G, an object is a subset
of N and a hom-set Hom(R,S8) = {9 € G| gRC S}):

0—Ci(-) i y-) Lo = o -(-)y —o.
Now we consider the following functor:

w : [(2¥)- G, Vectp] — Set,©

: M— M= [ M@E'(Y)).
PE(ZHY)N

In particular, we have _
w:C(=)— Wp|2,Y] :=W¢[Z +V,Y].

Applying the functor w to the above exact sequence an using the semisimplicity, we have a
G-isomorphism of G-sets: _ _
C x Wc1[2,Y] ¢ WelF x Y, 2Z).

This proves the required identity.
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Tits’ Classification of the Buildings of Spherical
Type in the Light of the Theory of Association
Schemes

Paul-Hermann Zieschang
Department of Mathematics
Faculty of Science
Kyushu University 33
Fukuoka 812, Japan

1. Basic Notation. Let X be a set.
We define
1:={(z,2z) | z € X}.

For each r C X x X, we set
r* = {(12)| (z,y) €T}
For each z € X, and, for each r C X x X, we define
zr:={ye X |(z,y) er}.

Let G be a partition of X x X such that § ¢ G and 1 € G. Assume that,
for each g € G, g° € G. Then the pair (X, G) will be called an (association)
scheme if, for all d, e, f € G, there exists a cardinal number a4.y such that, for
ally, z€ X, (y,z) € f implies that |yd N ze*| = agey.

For the remainder of this note, (X, G) will be a scheme.

For each g € G, we define n, := agyey.

We set

04(G):={geG|n;=1}.

The pair (X, G) is called thin, if O4(G) =G.
For all E, F C G, we define
EF:={g€G| ) ) ey #0}
eCE feP

and call it the complez product of E and F.
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For each F C G, weset F* := {f*| f € F}, wewrite F < Gif F'F C F # 0,
and we define
(Fy:= (| H
FCH<G
We set Inv(G) := {g € G | |{g)| = 2}.*

2. Factor Schemes. Let H < G be given. For each z € X, we define

zH = U xh,
hel

We set X/H := {zH | z € X}. For each g € G, we define
g :={(yH,zH) | z € yHgH).
We set G//H := {g¥ | g € G} and
(X,G)" := (X/H,G//H).

In general, (X, G)¥ is not a scheme. If (X, G)¥ is a scheme, we call it the factor
scheme of (X,G) with respect to H.
If (X, G) is thin or if |X] € N, (X, G)¥ is a scheme.

3. Automorphisms. Let ¢ be a permutation of X UG such that X¢ C X
and G¢ C G. Assume that, for all y, 2 € X and, for each g € G, (y,2) € ¢
implies that (y¢é, z$) € g¢. Then ¢ is called an automorphism of (X,G).

For each automorphism ¢ of (X, G), we set Fixx(¢$) := {z € X | z¢ = z}
and Fixg(¢) := {9 € G| 9¢ = g}.

4. Generators. Let L C Inv(G) be such that (L) = G.
It follows easily from [3; Theorem 1.4.1(i)] and [3; Lemma 1.4.5(i)] that

G= UL’
Jj€

In particular, for each g € G, there exists j € N such that g € L. For each
g € G, we define )
n(g):=min{jeN|ge L’}.

We now shall define a class of schemes which (according to [3; Theorem E])
can be identified with the class of buildings in the sense of Tits.

1 Clearly, here, as well as later, (g} is an abbreviation for {{g}).
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For all A, k € L with h # k, we set
My := {j € N\ {0} | 1 € ({h}{K})’}

._ min My, if My, # @
Tk = { R if M = 0.

It follows immediately from the definition of m that m is a Coxeter matrix
of L (in the sense of [2]).

Let us denote by F(L) the free monoid over L and by F,,(L) the set of
m-reduced elements in F(L).

It is easy to see that the power set R(G) of G is a monoid with respect to
the complex multiplication; cf. [3; Lemma 1.2.1(ii)]. We shall denote by p the
uniquely determined monoid homomorphism from F(L) to R(G) such that, for
eachle L, lp = {I}.

The pair (X, G) is called a Cozeter scheme with respect to L if, for each
f € Frm(L), |fp] = 1, and if, for all d, e € Fy(L), dp = ep implies that d and e
are homotopic with respect to m.

Assume that (X, G) is a Coxeter scheme with respect to L. Then (X,G) is
called spherical if |G| € N.

It follows from [3; Theorem E] that buildings in the sense of Tits correspond
(in a well-understood way) to Coxeter schemes. Moreover, with respect to this
correspondence, the buildings of spherical type (in the sense of [1]) correspond
to spherical Coxeter schemes.

5. Spherical Coxeter Schemes. The correspondence between buildings
and Coxeter schemes mentioned at the end of the last section allows us to give
the following formulation of one of the main results of [1].

Theorem 1. [J. T11s] Let L C Inv(G) be such that (X,G) is a spherical
Cozeter scheme with respect to L. Assume that 3 < |L| and that {1} = O4(G).
Then (X, G) is a factor scheme of a thin scheme.

The original proof of Tits’ theorem is fairly involved and depends mainly
on two reduction theorems. It is the purpose of this section to give a scheme-
theoretical proof for the first of these reduction theorems.

Here is the scheme-theoretical version of this theorem.

Theorem 2. Let L C Inv(G) be such that (X,G) is a spherical Cozeter
scheme with respect to L. Assume that {1} = Oy(G).

Let ¢ be an automorphism of (X,G), and let y, z € Fixx(¢) be such that
(y,2) € 3. Then, if zL C Fixx(¢), Fixx(¢) = X.
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The remainder of this section is devoted to the proof of Theorem 2. From
now on, L will be a subset of Inv(G) such that (X, G) is a spherical Coxeter
scheme with respect to L. In order to prove Theorem 2, we need four elementary
results on spherical Coxeter schemes, the proofs of which are left to the reader.

Proposition 1. There erists a uniguely determined element g in G such
that p(g) = maxp(G).

We shall denote by j the uniquely determined element in G which satisfies
u(7) = max y(G). (Note that j° =3j.)

Proposition 2. For each f € G, there ezists g uniquely determined element
e in G such that u(e) + p(f) = p(j) and {j} =ef.

For each g € G, we shall denote by ¢’ the uniquely determined element in G
which satisfies (g’) + u(g) = pu(3) and {3} = o'g.

Lemma 1. For each g € G, we have " = g and ¢"j = jg.

Lemma 2. Lety, z € X be such that (y,2) € j, and let | € L be given.
Then, for each z € y(l), |zl" N z{")| = 1.

Proposition 3. Let ¢ be an automorphism of (X, G), and lety, z € Fixx(¢)
be such that (y,z2) € j.
Let L € L be such that yl C Fixx(¢). Then 21" C Fixx(¢).

Let us prove Proposition 3. Let w € zI" be given. Then, as z € yj,
w € yjl" = ylj = yll";
see Lemma 1. Therefore, there exists v € yll such that w € vi'’. It follows that
{w} =vl" n2t"

see Lemma 2.

By hypothesis, we have y € Fixx(¢) and yl C Fixx(¢). Therefore, I = 1.
On the other hand, by Proposition 1, j¢ = j. Thus, by Proposition 2, I"¢ = 1"
und 1" = 1™

By [3; Lemma 1.4.5(ii)), #§ € {1,1}. Therefore, we have v € yll C {y}Uyl C
Fixx(¢). Thus, as "¢ = 1" (vi')¢ = vi™.

On the other hand, we have 2¢ = z and I"¢ = 1", Thus, (21")¢ = 21".

Now we obtain from {w} = vl N 2" that w¢ = w.

Since w € 21" has been chosen arbitrarily, Proposition 3 is proved.
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Let us now prove Theorem 2. Assume that zL C Fixx(¢$). Than, as z €
Fixx (¢), Fixg(¢) = G. (We shall use this later,)

Suppose, by way of contradiction, that ¢ is not the identity on X. Then
there exists n € N such that zL™ € Fixx(¢$). We choose n € N minimal subject
to this property. :

Since z € Fixx(¢), 1 < n. From the hypothesis that zL C Fixx(¢) we then
obtain that 2 < n.

Let z € L™ be given. Then there exist k, k € L and g € L™~2 such that
z € zghk. Thus, there exist v € zg and w € zk such that (v,w) € A.

Since (v, z) € j and {j} = g"¢’, there exists u € X such that {u} = yg’'Nzg"".
Since y, z € Fixx(¢) and ¢, g" € Fixg(¢), we now have u € Fixx(¢).

On the other hand, v € zg and z € ug’. Thus, v € ug’g = uj. From
v € zL™"? we also know that vh C zL"~2h C zL™! C Fixx(¢). Thus, by
Proposition 3, uh” C Fixx(¢). Status: RO

Since we are assuming that {1} = Oy(G), we have nj» # 1. Thus, as
(v,w) € h and (v,u) € j, there exists ¢t € u(h”) such that (v,t) € j and
(w,t) € j; see Lemma 2.

Since (v,t) € j und vk C Fixx(¢), tk” C Fixx(¢); see Proposition 3. Since
(t,w) € j und tk" C Fixx(¢), wk C Fixx(¢); see Proposition 3 and recall that,
by Lemma 3, k" = k.

Since z € wk, we thus have z¢ = z.

Since z € L™ has been chosen arbitrarily, we have shown that L™ C Fixx(¢),
contrary to the choice of n.

This contradiction finishes the proof of Theorem 2.
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HEADEXITIL, Blichfeldt D BBOILRLAA SN, M-BTIRR2VWIRELHH - &
BHRENTVWET,

Burnside ®ZADH 2 i (1911) iZiZFEHRIZV K DD D Notes DV TWET, FHALR
HLOILE 13/ H D Note M THENMBOBREEITRETHD LV, Wb B Burnside
DOFRIET S HDTY, B6HFEBD Note F CIXEERBMRRL L HOHBRBEZHOWVWT,
ETEOLIRARBODLIKERIFETHSZ LXHAL ., Z OIS LHEY M7
WIZLEHARLTWET, TLT—RIZDL S REOHEERRET D LitkitroM
BMTHDLBRTWET, SHITHREMUIEOBEODLRKEER O BIREEHRIMN
bhdZ &, FAIRBAMBEOBEIITELEHNRAL LHOIE, BIUBELREHRAL D
T=RWHERBEL., HEBHE p I2oWT, ¥ p hOB/NERBIBEL PR EL 20
HoTWBHZLREZMALTVET, ZOL 52ty MI LD LT BR2EHERR
FHOMOMEIZHOWTOMRIT 1930 FEETLERL THATLE, Thik, 20k
S RAMRBEOIELRRIT-DICTIIRBBROLFENLEE Y TZCELZRERM
1920 FERDEHITR - ESER L 2D E L B4, EREALITIARE G MNEEHRER
RBALLOLDORGEEZKRDOE HSILRRELT, C OBNERBSLED 5> LAHRETH
HL0LGNERTIERSOBL A LLET. CRENRBERRALLOEDICHLE
MOFTEL R FR M

ADELYE H RNHoT. A/H IIKERE, HIZ&EhTVW5 G OERESBE
X 1R

ZEThHD, ZORGIIERDO L HITHR<RBZ L HHiskET, VW E G ORI/ ERBILE
D—o% V ELET, SchurOHfEICE Y F = Endg(V) ZETC VL F Eo~<J by
ZMEVET, TITCVOF LORTE d=4d(V) EFEEL X 5, A XAR2EN
EHSHBEOEMTTN, TOHEMBFO OIS V LEARKILILOOEE r = (V)
EFThiE, k024 “TRTO V IZ2WT d(V) > r(V)” EREHfIRAEY 3, IEA
RELRRLERZ TV TEONINFELT, LOBRKAIKLDZIHLOTY, Z0ido
WE EDIOWTEIT SHEENOEE I Y 2722 L3RV O35, MEMIHM
FEoLhiZ, EREAEORINBR INIZEATHKA B EEO EROBE@-> T
ELW, ZORENHRD 254 LFRHATH S Z & 0L ERNZ —IEARKOIES
RERAWTHLNET, ¢ THLED r KER2 MZERIZEENS | REOBHEMOK
¥ p(r,i;q) LFITE

2 erig(X - 1)(X-g)...(X-¢)=X"-1

ZOMHA, EHOEBRIIU LD EMnbH LN L 5 IR LFOFRBERNI O —#
HATMADOERE VWD LBVETN, BROEERMIUL Tl e, BATL Y
5 M TEE 1930 iR T &7z Zentralblatt (ZIXE O BT Shliihotzlob—ROER %L
BIRIZEL N2 ONREICBbhvE$, 1937 4EICi Speiser ODAXD P I RN H DT
THREZTH M-BZET 58RI L 0EEORELRHCL I, THOERE RMIC
RO AN - SR BT EROMSENR KT L (1952) THEGETIE Curtis-Reiner ORBIRAS
B BEWET, TOZLIZOWT—EFDF ML ITETHEET, Curtis-Reiner D% &
DENHEEND 2 ~ IEROZ & T3, Marshall Stone A& Curtis-Reiner D%
HEoi=bizhitrZ L 2BEFEh T L, ZOROFBEOAFTIIHRENEZREN LD L
NP LK, EEAIL “BRERLY” LHLWVWILBERLOLDOTLE, EZTHEROED
T, SHHLANTELR RV, Db AN FRRWETFWABELREXZHVTEL =P
D—ORTHOEETL =, Curtis-Reiner B Y EiF7= = & 23 1960 RIS~ T, M-BE
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BT ARENRSEXTELIED—2DBAIZRS>TWVAINbANRRWEB-TWET,
Speiser D 3 FICHHIDD H>TWB ARAIEA, EBRDOZEET TF, Zassenhaus
OFRBIIWMRELEC LDIUFAATF 7T NLVEROIEARRBM S TWET, 1959 Fiz
7= M. Hall ® “B&#" CTHHEAOERITEBRELEDO—EENREAINRTWIETTT,
1960 £E4R1= 72 5 & Huppert, Gorenstein, Kurosch 22 ¥ DXz A X ADHFRE S B .
EhaksicebELi-,

R M-BHCRGEE LD L I RSEDIIFEEADOEBIC LD LBWET, HLTHh
RETRFEBEAIL 1950 ~ 1952 FIZ 11 BHLOTTHEERIEREL TEORETA,
FD ) HbD—DT Sylow BENTRTAMABEL 2D X SRR M-BTHII LU
AL TEDRBOANEEL T L, YFIFRKO AAXEESA TR L AP CREICHM
ENTW=DOTTIRZHBENSORTII 2L, 2EHBET 0N 2VRETCLAE, L
PLELORICIRK, ERXDAELEXZION-OLAT, THL TLICH N -boT
T, TORDEE, FHEEANL, M-BEOEL 5 W, M-BEOSLE (ERSLEE -
TECLEIM) BETFLY M-BEICROLWHARY PEITREELE, XRKRR2SOR
EBORETCHEIE phBEREOHIEL B X TRV RO LY, 2oh L BVHL
¥%, SO SFBEANLEL OMBEORTARE ZA2T/EIEXHMELI LK
EHEBTLE,

1941 ~ 1952

1941 2 8EL L CAXROBRIIEROKIBICALHL $3, THRIXRAOERICZLY .,
AREELSOMTRLSEL L TENo Litb L3 BbhEREL L ThLELI
LBDXMBEDOEY 2 7 —RAOPRE LRERELEDRYID 3 >DOWILH 1941 FITHR
SNt RORBREEOEBE LU LIzL D EBVET, BREATELRIBSNE
D —BOEEES| < DITRLP0REMRAI Y L, FIUELEDED HRIOPFTHEIT
ZORBECET RN KFEROTINT CCHRHEN - FRIISKAE 25 —KR
ﬁ%@iﬁf_i\:l Y Brauer-Robinson iz X Y EEBAEh £ L 7=, PIu-KBREKIC & 5 HIEEAL
HYET,

FENRKFEIAEL Fo YOI RICOWTHERL £, R AELI-DIL 194544 A,
HRIIEDOT<HISA 10 HOKEBTC TRIORKERFEMNTL £ 0720 T, HAEFEH
FIIFHMOE L ORI ICHBL . FZO/MERREY TR ST E L, BBk
ENRFLHTREDOREL R E 74T van der Waerden RO L THRCFE L FoH
BRETHRE e OBBHEOIEARSWTWEL BWET, AELRL. He¥hity
OB ERIT b0 BoTWeD TR, HIKAOMICKRERE A2 Y | KITIZTRBIZ
LY STHRPTLENDZ LR BBEBITTHIT B ENHELOIXFEVCLE,

FEOHANBFRTRELIHDIREROEY 1948 FEN S 1952 LED BT X A RO FEK
BRIBHC HROL~MZEBL TV BWEd, TV E X, IEA. P, B, X
B, 2% .. OEOUBEHOBRIZLZLOTY, EETTCIESTIOREICRY D
L. TOMEEELDOIHBAIZHOWTHR Y BEBLRT 538 7-TOh DL KE
FW/TCHHI-L BT,

1952 E& —BfD#DY LW Hh FROHBRL A THNLXEL-BHIX, Th
BEREOHBOHMN B XERRLUHL BT, BRORRITENE IR ERIHD
EXIZ2EY ERLERFENSTT, RN THLHEEBEE AL 1950 ~ 1952 EDEMRMIC 11
BHD, RERNS p BOMH I CLMMIzbRS, I<Chi-BXeREREhELE, *
ORIZiE, STHFBOEBLLTSIAZNIEAWRERELHBL ., BHORSREL. p
AMREVIEERY YR KX REBEEX LT TR, ThO2RBIEIRLMNPHE
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SABHEEDEDARECIVEDSNHEROKREREMICRBLTITFEELE, 0
WO LI HOWTHFEISAIBEE )N INEBVET,

BBFOZ LITHOWTWAE, $5)DTHIRI S 7=B30L partition % b OFIREEDOH S
¥WE~EGLOTT, B G O partition & IZESBOMEY 1 T [H] > 1 50 G OFIH
it H OW— DRI ST DLW I RBELI=TIOTT, ERZOBEEXE -
Dk, HIEOEFLOESTHGEANEEDH BB partition 2 HOERBEE WS
EHEEBIEICRSTRTT, TOFELEZMVTE H22<, partition & H DERBEIX SV R
ARBETHIBEELLRNENSIZ LITONWTRXEZEELE, Thdb 10 5E»
T. Kegel ®° Thompson 72¥ ® partition & B#L 7-&ERE D9 > T, partition ¥ bOH
RIFEOHEZ TN VRATIZENHERELE, HEHOW L ODDORID 5 b—F
EF LI OIXRBIEE PSL(2,p) BEOBABROMEILL > TREENR D LW I ERTT,
PSL(2,p) DHEDOBHBEDOHEITELICZ Burnside OFZ, FORNBHTWET, KD,
EBREOBEIZ DY 2/bE, AR, ZOFOME-E Y Kl G OHOWBLEHMN
TORD S LO—DIZFBTH DI, HHARMp>3ITHL TG PSL(2,p) &725h
EVWIREEBAT-ZLBHAIEWIBEEL IO WELE, ELT, TORYo—B
OWEETRRESTZDOTTIEHXTTENVWELE, HRiCR-STHLEEXLTHESL, ¥
U —HOREE TP DT TRERNS M ha L EHA . KRV S Y 5
L7=biF <, TARZLEEZLTHHLWERIIGORRVWES S LBsTWeFHiT k-
T. G OERMHRBROUERT LT 2000 THRFOLKRKHBEHADL S ITBWHL
¥9, H& T Braver LDOGHIZE 5T, TEWDODWAFRIMEENAHTW-ZERiT- %
D 30T DTTNREORTEMEIEDO S & CHEL TWd, FISBROMTERS &
MHEITSE Y OPRDTWERNS7=DTT, BMBEORSFEBLTELL LRV ERD
6 & A 5 '“'O@ﬁ'(‘"'o

B AFROFRBERTC—oOPLMEE 2 o 7-Di Brauer @ block BRDMERIZ
FEAE DI 5 Z & TL 7=, Brauerid 1944 55 S 1946 FEIZH>T T block DERERIZOWT 3
20 Notes % Proc. NAS IEREL S OEBEHERALLICRRELE, ZhbDERIX
block BBROBICH I RERFHTY, HEANROVTWRA>T7=DT, TOHEREDITH
ZENYTOMAERZYELE, 205 bE—XEEITIERAHNRE-OTINB_EERD
BERRIX 22Dl v Hid . KB, IR, kRRY DEEOBAHIZL T, SERRIBEAN
EH5ESTEAENELE, Zhil, BoEEROFROLMHTC—FIZLDHICHRERZD
DI B, Brauer ODIFGERIX T - LBMTH o= Z & H > T, Brauer BHDIE
AR BLATRREhELE, T0bE<IC kKBREAIC LA MBERNRZLALEA
{ER2ERNIH I, ) Green I L3 FEV2aTF—RBABO Y X b FITiEVW-HEHE
B7R2EEEA & 2o TWET,

FL 19524 1 ADS A Y ) A KHFED Baer BEOFHCEAFL L7, ThiCixdlsk
EOBBRRKEVEBWES, filifedid 1950 42 KED Cambridge Tdh 7= ICM i
HEENhThEAY ) AKEZ 1EBS S, Hochschild & —fICREROatErd—
RFRL R E2TWELE, FZCEOEDIZKED fellowship ZHFIchi-- TR LA
NBZABNWI=DTY, YRS Y ) A Tix Baer &40 & Z AT D. G. Higman A2 focal #
DB HOWTRMRE TERE LF-preL ., HigmanlXZ ORI BEOKONR
BRI 2R EENTWEDOTAMEZEAS>TWeZ E b HoTICE B2V EL
oo A4V ) AKFEOHEEMITELE Brauer-Suzuki-Wall OEIC (1958) IZBEMANTWHE
BHOH 2 0BE0MRIC Y- 5 EBEL AL =Y . Brauer ® block iz 43 B—FEHD
IEADERRY CRAILELE,

1952 SED FHMITIL. Brauer %&4A% Michigan KEFIZEA CTE 27D T, 2487
F—R—TBIT L ¥ L, THEKAEM Michigan 26 Harvard iCBOhBROHETLT:,
FNLICEBTHILSICLDBERICHAT, RroBHELESTHMARETT
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XY OFHADFLEDTHBEL ETCESE S TRESHLBSTHLHRITFREN B2 LT
L7,

FORFAXRT block BRICTRAZ DT L I LEDAERFENHILTHEINELE X
EROERITHRARANETFELIZE A, RERHIRH LWV S>TEREDRBERETTX
WELE, ETRVWEORDL KD L 5 RBICKERFTHETERE Sh-FHo0n
Bhof=Z &, FELTEOREDHIZ., check Sh-AHHTN 1, 2FEROMELWT 2o
HbASTWEZ ETLE, EARXEE LT T L, [AELHAMRLTHEEEMESh, &
BROZMERDTHEONIZOEEBWET, 2, IAZICRREZELTIZLWEDOZ LT,
SADOIERAIIfMH AN/ Ar o 7= T3 AL, Brauer 54D Induction BB DK FIDIFAD
J: 5 ll*ﬁﬁfltﬂ)fioti 5 L::E‘I\i—’.o

% A Brauer-Suzuki-Wall DIz E & b= Wall DRXTORERL ZoFiciztsk
RoTWEBWTWET, ZODDOVWE D2 OV Tix Sandy Green 2V 7= Brauer
@ Obituary IZ#>TWET,

HoM. B1E»2E, thETCRELOLEEEOBArEELAELE, JLAK
BTEYPTHIDORIILDTE DT Braver BE LA L L BWET, &AL
ENFEL TRzl s L, Brauer BAENEFNEMRLTTEDEWHITF->THNIE
RELXABCHRTIEVWSAPRYICLE, Feit XTEXERET, ZOVLWY
IE¥PrEShEFEED—ATLI,

Zassenhaus & DHELY (1955)

BR#n 26 £F (1951 £E) KIC M TOFEESTIEL = LF(2,p) DHESTIZOVWTORIIL,
BREECHL TR -BEEZBV=LOTRIZE > TRBVWHIRWRX TR, ZoE%
FAEOHBEORIZIZL 5 —2BWHHNSH Y £3, ThIXELA Zassenhaus IZEDHTH -7
BEDZ & T3, St 1955 T, Zassenhaus {ZHFF D McGill KEIZW=DTIA,
Sabbatical D k&A% & > T 14E. Princeton DFFRFTHZFETWVWEL =, €L T Princeton
IC—AEICED & Sz Thahh . Zassenhaus ITHHTEWELE, 20ELANCHD
BROBRBLZTVEAENISHECRLERBEDOE LB TW D TINESTHD
LEDEVDILET UK YLEL, URELHBFICR > TR 2D TiERWT
Lk od. Bvdidd, LF(2,p) OHRITOBIXOFENH T, Zassenhaus $ HDEHX
EFATLNZEM>T, ETHEBL-ZEEZBVWHLET, BHKIT G2 PSL(2,p)
ICRBIC 2B Z L ETTOIIEY 2 T —RRAEONSTDIXY SV IBHATTH L H»
hELE, BXEBWEFREY 27 —RABLIEBEL> TR oD TT, L
ML Zassenhaus 2 &> 7Btk AV bW 5 Zassenhaus §E% I~ 5 RER L - HEBMR
A, 2% D Zassenhaus B LN 2 MTBRHL R DPHE - = FEOWBREZ >M - T, Frob
BN wT#/e Zassenhaus DG EZREL IEM Y OBETLI=DT, “HREN2ETH
® Zassenhaus EONBICAW=FETHOHRET LEXDZEHHEE L, TORF
Zassenhaus LA TROBELOABUTIHETWDI L oTWE LA, TOEHEIX, 4%
Moo THE Feit KX DB (&) BREhELE (1960),

Y #F Zassenhaus i¥ 2 20 subnormal 22BN GERINDIBLBENRLTL D sub-
normal TRWE WS BYVIDOPE DL s7Fi T, BHELENREFOBOERRFELRY T
TXACHENTRLICRAL TKHhELE, FOFTFXUTEERONIE>THY £7,



CA BDwX (1954 ~ 1956)

CABRORX LWL, HOEREBVW S ETII—ERBOhIRE, SxXERI LS
LTHREDOTIN I ELITIT, FHEHE6ONITTWaDTTR, H5 AiE- LA
WA BORITENY, EADELWI EIZ2<BAHDI LD L SR AFE LK, Poincare
BEMZHBENTHWESTN, BEORTF v S ICR 2T TEHE,. HH5—2>DEROIHAL
ENFUEPATZENIDERL Z LEEBWET, RXLEE LT T, Proceedings ®
editor % L TV /- Braver B4 ICE 27O TITNR—FELoTH—EER- > THEFNHY
FHATLEE, 2D 9% 1956 EEDFKMN S Braver FEDOFH~MMICITL it 2D
HOKRDYIZNA—S—=FITEE L, £5729 Brauer 4N “HOREIIL referec A1 H
STIFEDRNE VS TEYIBLTE L, TITEMNEHTHLILBIN, TEZ I
KTWADENLEIF—THELTTEW E8bh., o< W LELT, BIXOHEAMN
R TWAEIRRWL, EBoTHAREL THE=6, EANTERTHSETOEWVRE,
IR BATWZ LT, 2OV S RN I ERBILENTH - THERITTERL
BRI TWELE, 2 2BBLTEHXEHL L 2R TI» 9 EPTEB LS
IR L, ¥INKbolob Brauer 4N CTARMBLR - L2 HD referee {2¥ 5
LTOhbRRohimizs 9" LEbh LN, ERiT referee DEWTIERLS, BX
DHEEFRENST=METT, 20 CA BORIUITEAHK LB -Thd 3ER-
= 1957 EICEIRI & ¥ L /=, Harvard {2V > % MiX Braver £ D37 T—4AMRGMMAL &
Lz, BBEELECIRBON, BT XL TV enidsgEnCLi,

1957 ~ 1960

Harvard 5> S o T2 EDOBK (1957) 1 O KAN U T KRFICEFRBER L L T—EREDT,
BRI BT ENREL D LI, TOZ L2l MacLane 226 LD F
Bz d KFET MacLane Q24 ZBOHICHBOBELT A L5 ICHERELE, A
NETHRURFENWELEN, 20 55 THRICRLRELEMN Thompson TL, H
SRS DABAICHRTET “BER—B P office TEXTWDEN" LATADIEDK
EEBRLICEED LELE, TOHEDOBHENE L 5T, Frobenius oo Mz iy
DEOF B/ LD, T ICHRABRBERA BB E S ILLWV D EBVET,

¥z DI EMNFLE Lo T Albert & MacLane RH#EEB L 2D | 1959 4EHIC . DT
HRERAZDPOLTH%EM NewYork TN ELE, ZOLITIR, 2OEI UK
FIETBONEKREALBMENE LT, Alberti33| E KV THREROSEZHEL
EL7, TRIXERBROBVIIEE &2 —EL T KA, Bx3HM2EHES
i LTHRIHELHES LS5 L boTd, SO/MdiC Brauer ® Wielandt
bLYaEMmkLNELE, ZOSREOEROBERBROBRBICENISTERETH 1ML E
SRHARLTWAi@ YT, BELL ZOSICHEIANELR, ZOMMROREKOIL
Th oo Zassenhaus BORBFUC K ELREBRE R IWEL, ZOFIFEXREE LD
IR¥EDEBFBL LTETBEONELEOT, 3 TEEAICWI LI REITHES -
T—ErBZLELE,

FORDEIIPBEIAMMIAY /A RFICETRNTERL, BLWVW—FEEZBILEL
Teo 4V 7 ARFREREAROBEFRIZECETN, HFREMFETIX, EEEXRZA
M 1955 4EN S 34EM. 1962 EIZFAEXA . 1964 NS 2EMBRAIA . 1970FICRH
SAh. BETIRERBNEOLNE L, SHNTRH Y LN 1970 ERICEA, TN,
HoREE, BoRicidibdE, MFEOMRETTFEIVELL,

Zassenhaus O NFOE > oDk, v HATOSOEERH IO 1960E 1 A



{Z Zassenhaus BED—FF ($5AKBE) NBEREINZZ L TLE, £DOB CN oK%
FEREELHIELEBHLEDOTY, L 54 SL(2,2") LN TTERTENRMN SL I
RAZLEHEATIEIZENTERTAILVIBRICRVELE, bENLRAEZNIT
M7= FmzHEd 59 L LTWebi3Td, BXAONANREHOFEEZOLLTWVS D
H, EOZENAHYEK: EBAI-DOT, K€ I EAT Braver £4£L Thompson IZZ
RTLAHEEEMEBBNTLENELE, LTHH2, 3AT>THARLTHED
RELLOHBZLEZRBALT, HDOTTIHEDOFEHRLHL £ L7z, ThompsontZix “f
M. non-trivial 2 Z EMABAINTWAR LS5 LBW=EITT, §TIRYSLTZ A
RIEEBNOMRNY A, HE THABDOIEE M -7 Thompson 2% “Z A RMZ
non-trivial 2= & LB bRahot-” LRBIFBFLTSELE,

YHIDEOH LITIIBEROEENLIZLIEMM W3 X Siche b EL 1k, 19684FIZIT
TV AV OREFRT—EMREBEL FRELXEEL LSV ELE, Z04iA
ANbEABREALRBERBMENWELE, ThE VR EBRBEARRERERLBAL
TREB P UCHRZED OGN, BRBORL2YOBSEZRAEShELE, ZhbDz
LIZOWTIHE, ZOLTHRBIADOEBENRHY ETOTELLIZWTD EF, X, ZOH
D#EORFOERMREORFIIMMOBRICL > THLMNCRB EBWET, 19744
EADEEEZ XL L-HRHEROSHILER. HETHMINZZ L —TR<TB&ET,
ZO2TIAENS HLEHEBML . B AROHRBREEOMEN2MWENICL-oTETY
BETLE, £T, YO BHMBROBRENRHESOVTRERIhEET TR, TORFOE
MEFBEOFER D DMLLMRICL T, Thrbd L OBMBRORBICHERIZKE 2R
BrEXT-Z LR RENJIREKZLBVET,

sU

BERD (AR) B W TRREEWVWIFEABMLLOBIFETLEA, Ry, BN
Hedie2y, hlckolREICRoTLE-TMnEBnEd, RE. APRHMAREOS
FUT—RER L= L v 2, BBBEOHRIC W TIMZEEAL & 5 &hiE, el
HMIEZFRTHRLL TSRV EWHIONRSGORIBTCY, Thibix, SEERLFA
LT—ROFMBLW~D AL #iIC, HAFEOL > THWAHREZ b L EHT I &M
KELBWET, L) —E=+Ec E DX > THRERORBENIV RSB LY
LB LEROZ LCIRRVWEIEEDhET,

19944E7H 20A, 21 8
REHBEGERY—R 27—V (BB) =T
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Appendix B

Publications by Japanese
Mathematicians in Group Theory
before 1952

(with Professor Michio Suzuki’s Memo)

Group Theory in Japan before 1941

Source: Proc. Imp. Acad. Tokyo, Japanese J. Math. and

Zentralblatt fiir Mathematik Band 1 (1930) - Band 28 (1944)

[A ]

Aramata Hidco: Uber die Teilbarkeit der Zetafunktionen gewisser algebraischer Zahlkorper, Proc. Imp.
Acad. Japan 7 334-336 (1931). A special case of the theorem proved in the next paper.

—: Uber die Teilbarkeit der Dedekindschen Zetafunktionen, Proc. Imp. Acad. Japan 9 31-34 (1933).
Divisibility of zeta-functions in the Galois exlension of a number field: a proof of the equivalent statement
in character theory.

—: Uber die Eindeutigkeit der Artinschen L-Funktionen, Proc. Imp. Acad. Japan 15 124-126 (1939).
The uniqueness of Artin’s L-function when Gal(K/k) is LF(2,p).

Asano Keizo: Uber die Darstellungen einer endlichen Gruppe durch reelle Kollineationen, Proc. Imp.
Acad. Japan 9 574-576 (1933). Determination of the cokomology group of the 2-cocycles over the real
numbers which ia an elementary abelian 2-group.

Asano Keizo, and Shada Kenjiro: Zur Theoric der Darstellungen einer endlichen Gruppe durch Kollincatio-
nen, Comp. Math. 2 230-240 (1935). Ezistence of the representation group is proved over an algcbraically
closed field in a new fashion; a new proof on the bound of the number of isomorphism classes of the rep-
resentation groups; when the characteristic of the field is prime to the order of G, a method is given to
find all representations in collineation groups.

Asano Keizo, Qsiina Masaru, and Takahasi Mutuo: Uber dic Darstellung von Gruppen durch Kollincatio-
nen in Korper der charakteristik p, Proc. Phys-Math. Soc. Japan III 19 199-209 (1937). A representation
group G of a group H in characteristic p is defined as a group having a normal subgroup A such that
AC Z(G)NG', G/A = H and |A| is equal to the number of classcs of equivalent factor sets over an
algebraically closed field of characteristic dividing |H|. Exzistence is proved as in the characteristic zero
case; denoting the corresponding groups in characteristic zero by Gy and Ay, it is proved that G & Go /S
where § € Syl,(Ag). The number of essentially different irreducible projective representations over o
given factor set is determined. Proof uses twisted group ringa.

M
lyanaga Shokiti: Zuun Bewceis des Hauptidealsatzes, Abl. Math. Sem. Hanb. Univ. 10 349-357 (1934).
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Simplificd proof of the principal idcal theorem using the improved version of transfer theory and the
splitting groups duc to Artin.

(K]

Kakutani Shizuo: Uber die Metrization der topologisclien Gruppcu, Proc. Imp. Acad. Japan 12 8284
(1936). Every Hausdorff group with the first countabilily eziom posscsscs a lcft invariant metric.

Kawada Yukiyosi: Charaktere lincarer Gruppen, Proc. Iinp. Acad. Japan 15 71-75 (1939). The
characters are computed for the group of the type Pz = w'z + a where w is a fized element of a finite
field F and a € F; some applications on Artin's L-functions.

—: Uber dic Uberlagerungsgruppe und die stetige projcktive Darstellung topologischer Gruppen, Japan
J. Math. 17 139-164 (1940).

Kodaira Kunilike: Uber die Differenzierbarkeit der cinparametrigen Untergruppen Liescher Gruppen,
Proc. Inip. Acad. Japan 16 165-166 (1940).

Komatu Atuo: Uber cinige Komponenten Gruppen, die topologische Invarianten sind, Proc. Phys. Math.
Soc. Japan IIT 19 210-214 (1937). Topology.

Kondo Koiti: Uber dic Zerlegung der Charaktere der alternicrenden Gruppe, Proc. Imp. Acad. 16
131-135 (1940) The decomposition of characters of A,, into the subgroup A,_,.

—: Table of characters of the symmetric group of degree 14, Proc. Phys-Math. Soc. Japan III 22 585-593
(1940).

(NI

Nakayama Tadasi: Sonic studics on regular representations, induced representations and modular repre-
sentations, Ann. of Math. II 39 361-369 (1938). Study on gencral algebras; gencralizations of Frobenius
reciprocity theorem for nonsemisimple algebras and their applications to representation theory of finite
groups.

—: A remark on representations of groups, Bull. AMS 44 233-235 (1938). A theorem corresponding to
the Frobenius reciprocity theorem is proved for the ring of almost periodic functions on e group.
Nakayama Tadasi and Shoda Kenjiro: Uber die Darstellung einer endlichen Gruppe durch halblineare
Transformatienen, Japanese J. Math. 12 109-122 (1936).

[0]

Osima Masaru: Beweis eines Satzes in der Darstellungstheorie, Proc. Imp. Acad. Japan 13 121-124
(1937). The p-modular representations induced from the irreducible representations of a normal subgroup
H of indez prime to p are completely reducible and the number of nonequivalent ones is egqual to the
number of conjugacy classes of p-regular elements that are contained in H.

—: Uber die Darstellung einer Gruppe durch halblineare Transformationen, Proc. Phys-Math. Soc.
Japan IHI 20 1-5 (1938). A study of representations by semilinear transformations in terms of the repre-
sentation induced on the fized subgroup.

Osima Masaru, in Asano-Osima-Takahasi

[S]

Shoda Kenjiro: Uber die Automorpliismen einer endlichen Abelschen Gruppe, Math. Ann. 100 674686
(1929-30). Detailed study of the group of automorphisms of a finite abelian p-group, particularly when
P = 2; a condition for the solvability of the group of automorphisms is given.

—: Uber dic charakteristischen Untergruppen ciner endlichen Abelschen Gruppe, Math. Z. 31 611-624
(1929). Let A be a finitc abelian group, 0 = End A, G = Aut A, and g the ring generated by G. Then,
¢ may be different from o; when A is a p-group, a necessary and sufficient condition for g = o is found.
All characteristic subgroups of A are found.

—: Uber dic zugehbrige Gruppe cines endlichen Ringes, Proc. Imp. Acad. Japan 5 103-104 (1929).
Announcement of the reaults to appear in Math. Ann. 102.

—: Uber die Emlxcltcngruppe eines endlichen Ringes, Math. Ann. 102 273-282 (1929). Mazimal nilpotent
aubrmgs of End A is atudicd for an abelian p-group A: they correspond to Sylow p-subgroups of Aut A.

: Uber das Holomorphie ciner endlichen Abelschen Gruppe, Proc. Iip. Acad. Japan 5 314-317 (1929).
Representation of the unit group of End(A) for a finite abelian p-group A in terms of matrices, similar
to the case of an elementary abelian p-group,

- Uber den Automorphismenring bzw, die Automorphisinengrappe einer endlichen Abelschen Gruppe,
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Proc, Imp. Acad. Japan 6 9-11 (1930).

—: Uber dic Einlicitengruppe cines endlichen Riuges II, Proc. Iinp. Acad. Japan 6 93-96 (1930). If A
is a finilc abelian p-group, then e mazimal nilpolent subgroup of the unit group that is defined similar to
the group of triangular matrices is a Sylow p-subgroup and the structure of derived serics is determined.
—: Bemerkungen iiber die Frobeniusche Komposition der Charakter eincr endlichen Gruppe, Proc. Iinp.
Acad. Japan G 187-189 (1930). Remarks on equivalence of the resulls of Frobenius’ two papers on group
characters.

—: Gruppentheoretischer Beweis des Aquivalcuz- und Euthalteuseinsatzes in der Theorie der Matrizen
mit ganzen Kocffizienten, Proc. Iinp. Acad. Japan 6 217-219 (1930). Application of group theory to
matriz theory.

—: Uber dic Autontorplismen einer endlichen zetlegbaren Gruppe, J. Fac. Sci. Univ. Tokyo 2 25-50
(1930).

—: Uber direct zerlegbare Gruppen, J. Fac. Sci. Univ. Tokyo 2 51-72 (1930). Let G be a finite group.
The group G has a faithful irreducible complez representation if and only if the union U of all abelian
minimal normal subgroups of G contains a subgroup V such that UJV is cyclic and core V = 1; the paper
states a condition which claimed to be equivalent to the condilions staled above in lerms of the groups
induced in the minimal normal subgroups.

—: Uber die irreduziblen Substitutionsgruppen deren Grade Primzall sind, J. Fac. Sci. Univ. Tokyo
2 179-201 (1931). A finite irreducible group of unimodular linear substitution groups of prime degree
is either monomial or primitive: in the case of a monomial group, the structure of a mazimal abelian
normal subgroup is complctely determined, in the case of a primitive group, less precise result is obtained;
Jrom these results, solvable groups of this nature are determined.

—: Bemerkungen iiber vollstindig reduzible Gruppen, J. Fac. Sci. Univ. Tokyo 2 203-209 {1931). A
study on completely reducible groups with a correction lo earlier paper on the Shoda-Akizuki Theorem.
—: Uber die monomialen Darstellungen ciner endlichen Gruppe, Proc. Phys-Math. Soc. Japan III 15
249-257 (1933). The transitive monomial represcntation corresponds lo an ideal of the group ring; using
this presentation, equivalence or irreducibility of monomial representations are studied with applications
to the representation of a melabelian groups.

—: Uber die Aquivalenz der Darstellungen endlicher Gruppen durch halblineare Transformationen, Proc.
Imp. Acad. Japan 14 278-280 (1938). Every representation G of e group by semilinear transformalions
gives rise to a faithful representation G* by linear transformations on vriables z;, =} with zj = 3 a}, z]*.
Relations between the equivalence of G and H and that of G* and H* are studied.

—: Uber die Invarianten der endlichen Gruppen halblinearer Transformationen, Proc. Imp. Acad. Japan
14 281-285 (1938). Let G be a group of semilinear transformations over a field K of char(K) = p with
A C Aut(K), H the fized subgroup and k the fized field of A. Then, there ezists finitely many polynomials
F\,--, F, such that invariants of H are polynomials of F; with coefficicnts in K and invariants of G are
polynomials of F; in K.

—: Uber die Invarianten endlicher Gruppen linearer Substitutionen i Korper der Charakteristik p,
Japan J. Math. 17 109-115 (1940). A new proof of theorem of Noether on finite generation of invariants
of a finite group. It is generalized for finite groups of collineations.

—, in Asano-Shoda

—, in Nakayama-Shoda

Suctuna Zyoiti: Zerlegung der Charaktere ciner Gruppen in die Thres Normalteilers, Japan J. Math. 12
95-98 (1935). For a group G with normal subgroup H such that G/H is abelian, a concept equivalent lo
the inertia group of an irreducible character of H is defined and Clifford typc theorema are proved.

—: Abhangigkeit der L-Funktionen in gewissen algebraischien Zahlkdrper, J. reine. angew. Math. 177
6-12 (1937). Character decomposition when G/N is the congruence group mod p.

—: Uber dic Zerlegung der Gruppencharaktere, Japan J. Math. 16 63-G9 (1939). A detailed study of
decomposition of characters when G/N is the congruence group modulo p of order p(p — 1)/q.

—: Uber die Zerlegung der Gruppencharaktere I, Japan J. Math. 16 79-91 (1939). The decomposition
of characters when GN = As.

Sugeno Torao: Beweis cines Satzes itber Charakter, Proc. Pliys.-Math. Soc. Japan II 15 233-234
(1933). A proof of the thecorem that the group of prime residuc clusses modulo a natural number has a
non-principal character.



(T]

Taketa Kiyosi: Uber die Potenzsumme der charaktere einer Permutationsgruppe, Proc Iinp. Acad. Japan
4 34—30 (1928). The sum of the k-th power of the character of a permutation group G over the group is
divisible by the order |G].

—: Uber die Gruppen, deren Darstellungen sich samtlich auf monomiale Gestalt trans formieren lassen,
Proc. Imp. Acad. Japan 6 31-33 (1930). An M-group is solvable; if & finite group G contains an abelian
normal subgroup A such that GfA is supersolvable, then G is an M-group; and not all solvable group is
an M-group (SL(2,3) is not an M-group).

—: Uber dic Primitivitat ciner anfidsbaren Pennutationsgruppe, Proc. Imp. Acad. Japan 7 31-32
(1931). Proof of a theorem that a transitive solvable permutation group is primitive if and only if it has
a transitive minimal normal subgroup.

—: Uber dic monomiale Darstellung ciner auflésbaren Gruppen, Proc. Imp. Acad. Japan 7 129-132
(1931). A metabdelian group is an M-group.

—: Uber die aufldsbaren lincaren Substitutionsgruppe, Proc. Imp. Acad. .Iapan 7 179-181 (1931). A
technical result related to Clifford type theorem.

—: Neuer Bewels eines Satzes von Herrn Filirtwingler iber dic metabelischen Gruppen, Jap. J. Math. 9
199-218 (1932). A new proof of the principal ideal theorem.

—: Uber die Struktur der metabelischen p-Gruppen, Proc. Iinp. Acad. Japan 9 480-481 (1933).
Construction of a p-group G having a given abelian group A as a mazimal abelian normal subgroup and
T'= G/A as abelian of largest possible order.

—: Uber dic Struktur der metabelischien Gruppen I, Jap. J. Matl. 13 120-232 (1937). Study of mazimal
abelian substitution groups over GF(p*).

Tannaka Tadao: Uber den Dualitatssatz der nichtkommutativen topologischen Gruppen, Tohoku Math.
J. 45 1-12 (1938). The Tannake duality theorem for compact groups.

Tazawa Masatada: Einige Bemerkungen Uber den Elementarteilersatz, Proc. Imp. Acad. Japan 468-471
(1933).

—: Uber eine Eigenschaft der hyperkommutativen Gruppe, Proc. Imp. Acad. Japan 9 472475 (1933).
Hypercommautative (= nilpotent): A finite group is nilpotent if and only if it conlains a normal subgroup
of every possible order; a new proof of a theorém of Burnside that such a group is a direct product of
Sylow subgroups.

—: Uber die Darstellung der endlichen verallgemeinerten Gruppen, Sci. Rep. Tohoku Univ. I 23 76-88
(1934). Determination of all representations relative to a given factor set. Twisted group ring és used.
—: Remarks to some theorems of Burnside, Proc. Imp. Acad. Japan 10 307-310 (1934). Algebraic
proofs of two theorems due to Burnside on the composition of representations of a finite group.

—: Uber die monomial darstellbaren endlichen Substitutionsgruppen, Proc. Imp. Acad. Japan 10
397-398 (1934). Let |H| = p"q™-:- with p < ¢ < --- and abelian Sylow subgroups P,Q,--.. Let
8(P) = (p—1)(p® —~ 1) -- (p" — 1) where r is the rank of P. If 8(P) is prime to hfp", 8(Q) is prime to
hfp"q™,--, then H is an M-group.

—: Remarks on Frobenius’ and Kulakoff’s theorems on p-groups, Sci. Rep. Tohoku Univ. I 23 449476
(1934). The number of subgroups of order p is congruent to 1 +p + p* (mod p*) if p > 3, B(G) is cyclic,
and |G : ¥(G)| 2 p°.

—: II Sci. Rep.Tolhoku Univ.I 24 161-163 (1935). The number of subgroups of order p™ for1 < m < n—1
is congruent to 1 + p + 2p? (mod p®) when G has no subgroup of order p* of a special type.

—: Uber dic Darstcllung der beliebigen Gruppen gebrochenc lineare Transformationen, Sci. Rep. To-
hoku Univ. I 24 352-371 (1935). With help of von Neumann's theory of almost periodic functions the
author studies the almost periodic (bounded) representations of an arbitrary group by linear fractional
transformations.

~—: Uber einen Satz der abgeschlossenen Gruppen, Tolioku Math. J. 45 154-156 (1938). Let M = G*.
For any finite noncyclic simple group H, there is at least one group G such that Z(G) = M and GIM = H
with nonsplit extension.

—: Uber die isomorphe Darstellung der endlichen Gruppe, Tohoku Math. J. 47 87-93 (1940) A char-
actcrization of those finite groups which admit an faithful rcpresentation having exactly n irreducible
coniponents.

Toyoda Koshichi: Ou the adjoint groups of Lic’s continuous groups, Sci. Rep. Tohoku Univ. 124 269-283
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(1935).

—: On Casimir's theorem of scini-simple continuous groups, Jap. J. Math. 12 17-20 (1935).

-(—: O)n the universal covering group of Lie's continuous groups, Proc. Imp. Acad. Japan 11 405-406
1935).

—: On the structure of Lic's continuous groups, Sci. Rep. Tohioku Univ. I 25 338-343 (1936). A4 new

proof of E. Carian’s thcorem,

—: On differential operators permutable with Lic continuous groups of transformations, Proc. Lmp.

Acad. Japan 13 172-175 (1937). A ncw proof of a theorem of Casimir,

—: On axioms of mean transformations and automorplic transformations of abelian groups, Tolioku

Math. J. 46 239-251(1940).

~—: On affine geometry of abelian groups, Proc. Imp. Acad. Tokyo 16 161-164 (1940).

—: On lincar functions of abelian groups, Proc. Imp. Acad. Japan 16 524-528 (1940). Aziomatic siudy

of linear funclions on abelian groups.

(W] ,

Watanabe Sigekatu: Sur les formes spatiales de Clifford-Klein, Japan J. Math. 8 65-102 (1931).

—: Sur un espace qui admet comme groupe d'isométries un groupe donné, continu d’ordre fini, simplement

transitif I and II, Japan J. Math. 10 133-150 151-162 (1933).

(Y]

Yamada Kaneo: Uber Gruppen mit Bases, Tohoku Math. J. 44 406-109 (1938). Groups with base are
defined, and proved that they are solvable. If the order is odd, G is abelian.

—: Uber die Gruppen mit basen II, Tohoku Math. J. 45 308-309 (1939). Conditions for a group to be
solvable when it is a product of cyclic groups.

—: Ein Kriterium fiir die Nichteinfachheit der Gruppen, Tolioku Math. J. 46 44-45 (1939). Let H be o
subgroup of index n of a group G. If G has an element of orderp"q*--- withp"+q* + -+ > n, G cannot
be simple.

Yamanouchi Takahiko: On the construction of unitary irreducible representations of the symmetric group,
Proc. Phys-Math, Soc. Japan ITI 19 436450 (1937). Inductive construclion of irreducible represcntations
of Sq.

Yosida Kosaku, A note on the continuous representation of topological groups, Proc. Imp. Acad. Japan
12 329-331 (1936).

—: A remark on a theorem of B. L. van der Wacrden, Tohoku Math J. 43 411-113 (1937). A very elegant
purely group theoretical characterization of compact simple Lie groups.

—: A theorem concerning the semi simple Lie groups, Tohoku Math J. 44 81-84 (1937).

—: On the group embedded in the metrical complete ring, Japan J. Math. 13 459-172 (1937). Let G
be a locally bicompact connected topological group and D a continuous representation of G in a complete
metric ring. Then, D is a Lie represeniation.

—: A problem concerning the second fundamental theorem of Lie, Proc Imp. Acad. Japan 13 152-155
(1937). If the system X, -+, X, is irreducible, so is the group germ in the neighborhood of 1.

—: On the fundamental theorem of the tensor calculus, Proc. Imp. Acad. Japan 14, 211-213 (1938). If
G is a connected, simply connected semisimple Lie group and D a connected group of matrices to which
G is continuously homomorphic, then the homomorphism is open and D is a Lie group.

—: A note on the differentiability of the topological group, Proc. Phys-Math. Soc. Japan III 20 6-10
(1938). A multiplicative subgroup of a complete metric ring is a Lie group if it is complete and differen-
tiable.

Group Theory in Japan 1941-1952
Sourcc: Math. Reviews

Hattori Akira: On invariant subrings, Japan J. Math. 21 121-129 (1951). A generalization of the theorem
of Cartan-Brauer-Hua. )
—: On the multiplicative group of simple algebras and orthogonal groups of three dimension, J. Math.
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Soc. Japan 4 205-217 (1952). If B is a simplc subalgebra of a simple algebra A of finite rank over its
center F such that F # B # A, and if [B] denotes the set of subalgebras F-isomorphic to B, the group
I(A) of inner automorphisms of A acts faithfully on [B), in particular [B] is an infinite sel. Normal
subgroups of OF(Q) of the form of indez 0 are given.

Honda Kinya: On finite groups, whose Sylow groups are all cydlic, Proc Japan Acad. 25 154~159 (1949).
Announcement of results on the details of the structure of finite groups in the title.

—: Ou finite groups, whose Sylow-groups are cyclic, Connuent. Math. Univ. St. Paul 1 5-39 (1952).
Proofs of the results announced in the above paper.

Iuaba Eizi: Uber modulare Verba'nde, weldie die Untergruppen einer endlichien Gruppe bilden I, Proc.
Imp. Acad. 19 528-532 (1943). If a latticc L is a direct union of luttices in which cvery interval is a
chain or contains no neutral elements (like L(G) of finite abelian groups), then every element of L is a
join of elements ¢ with the intcrval ¢/0 is a chain; some other propertics of such a lattice.

Iscki Kiyoshi: On simply ordered groups, Portuugaliae Math. 10 86-88 (1951). If every cut of a lincarly
ordered group is continuous, it is isomorphic to the additive group of real numbers.

Isiwata Takesi: Non-discrete linearly ordered groups, Kodai Math. Semn. Rep. 1950 84-88. Discussions
of the relationship among properties of linearly ordered groups, locally compactness ete.

Ito Noboru: Note on p-groups, Nagoya Math. J. 1 113-116 (1950). There exists an infinite chain of
p-groups Gy, Ga, - - - such that p odd, Gy elementary abelian of order p°, and Gy & G 4.1/0(Gnyy) where
0,(X) is the nth derived group of X.

—: Some studies on group characters, Nagoya Math. J. 2 17-28 (1951). In the case when N 9 G and
IG : N| = p, a prime, a construction is given lo associate a block of characters of G to that of N; as
applications, for a solvable group G, if Op(G) = 1 for plg = |G|, G has a p-block whose defect is not
the mazimal one; if the Sylow p-subgroups are T1, there is a p-block of defect zero; if the degrees of all
irreducible characters are prime to p, then the Sy-subgroup is normal.

—: On the degrees of irreducible representations of a finite group, Nagoya Math. J. 3 5-6 (1951). If A
is an abelian normal subgroup of G, the degree of any irreducible character divides |G : A|.

—: On the characters of soluble groups, Nagoya Math. J. 3 31-48 (1951). A sufficient condition for a
solvable group to have a p-block of defect zero; similar results for a positive defect.

—: A theorem on the alternating group A,(n > 5), Math. Japon. 2 59-60 (1951). Proof that every
element of An(n > 5) can be ezpressed as a single commutator.

—: Remarks on factorizable groups, Acta Sci. Math. (Szeged) 14 83-84 (1951). If G = HK with H
nilpotent and K abelian or a p-group, then G is solvable: this marks a great step forward.

—: Note on (LM )-groups of finite orders, Kodai Math. Sem. Rep. 1951 1-G The paper gives the structure
of minimal p-nilpotent groups, of LM -groups, of minimal LM-groups, and others.

—: Note on A-groups, Nagoya Math. J 4 79-81 (1952). If all Sylow subgroups of a solvable group G
are abelian, G is an M-group; the sct of elements x such that x(z) # 0 for any irreducible character
generates the mazimal nilpotent normal subgroup.

—: On a theorem of L. Rédei and J. Sz&p concerning p-groups, Acta Sci. Math, (Szeged) 14 186-187
(1952). If H is a subgroup of a p-group G such that D(H) # D(G), then D($(G)H) # D(G): this was
Jollowed by works of Hobby- Wright, Hill, and Janko.

—: Remarks on O. Griin’s paper “Beiteige zur Gruppentheoric III", Math. Nachr. 6 319-325 (1952).
Many results concerning p-normality, p-regularity and p-hyperregularity: among them, the weak closure
of the center of a Sp,-subgroup P in P of a solvable group is abelian.

—: On Il-structures of finite groups, Tohoku Math. J. (2) 4 172-177 (1952). Sylow type theorems for
p-separable groups (under the assumption of the validity of the conjugacy statement of Schur-Zassenhaus
theorem; some results on conjugate complez of Griin.

Ito Noboru and Nagata Masayoshi: Note en groups of automorphisms, Kodai Math. Semn. Rep. 3 37-39
(1949). If G is ¢ complete group that is indecomposable with minimal condition for normal subgroups
then Aut(G x G) = (G x G) < y > where y? = 1 and y(a,b)y~" = (b,a). Furthermore, Aut(G x G) is
indecomposable, and complcte unless G = Sy.

Ito Scizo: Unitary representations of some linear groups, Nagoya Math. J. 4 1-13 (1952). The explicit
detcrmination of the irreducible unitary repreaentation of the group of sense prescrving rigid motions in
planc.
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Iwahiori Nagayoshi: Non-representability of real general linear groups in higher dimensional Lorentz
groups, Sci. Papers Coll. Gen. Ed. Univ. Tokyo 2 13-23 (1952). Which groups GL(n, F) are isomorphic
to subgroups of O(m, k, F) fizing the form 2} + .-« + 2z, — 22 | — .- — 22 . ? Theorem. There is no
continuous monomorphism of GL(n,R) into O(m,,R) if n > 3.

Iwasawa Kenkiti: Uber die Einfaclheit der spezicllen projektiven Gruppen, Proc. Imp. Acad. Japan 17
57-59 (1941). Simplicity of PSL(n,K) ezccpt n = 2 and |K| < 3 is provcd elegantly.

—: Uber die endlichen Gruppen und die Verbande ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo I

4 171-199 (1941). Detcrmination of finile groupa with L(G) modular and other numerous new reaulls on

the subgroup lattice of a finile group.

—: Uber die Structur der endlichen Gruppen deren echte Untergruppen samtlich nilpotent sind, Proc.

Phys-Math, Soc. Japan III 23 1-4 (1941). Structure of such groups is completely determined,

—: Einige Sitze iiber freie Gruppen, Proc. Imp. Acad. Japan 19 272-274 (1943). A proof that any free

group is residually finite p-groups for any given prime p.

—: On the structure of infinitc M-groups, Japancse J. Math. 18 709-728 (1943). Determination of the

structure of infinile groups wilh modular lattice of subgroups. The resull is complete when therc is an

clement of infinite order, for torsion groups, one need lo assume that every section of finite length is a

finite group. (This assumption is really needed due lo the ezistence of the Tarski Monsters.)

—: On the structure of conditionally complete lattice-groups, Japanese J. Math. 18 777-789 (1943). A

proof of Birkhoff 's conjecture that a conditionally complete lattice-group is commutative.

Kawada Yukiyosi: Uber den Dualititssatz der charaktere nichtkomunutativer Gruppen, Proc. Phys-Math.
Soc. Japan III 24 97-109 (1942). An approach different from Tannaka’s lo the duality theorems.

Kinosita Yosihisa: On an enumeration of certain subgroups of a p-groups J. Osaka Inst. Sci. Tech. 1
13-20 (1949). A formula, slightly different from the known one, ezpressing the number of subgroups of
given type of an abelian p-group in terms of the type invariants is oblained.

Kondo Koiti—: Dccomposition of the characters of some groups I, Proc. Phys-Math. Soc. Japan III 23
265-271 (1941). Formulas for the recurrent calculation of the characlcrs of the hyperoctahedral group.
—: Decomposition of the characters of some groups II, Proc. Phys-Math. Soc. Japan 23 783-787 (1941).
Decomposition of an irreducible representation of O(n) inlo irreduciblc representations of O(n —1). A
similar reduction is given for O*(n) and for Sy(n).

Kurosaki Tiyoko—: Uber dic mit ciner Kollineation vertauschbaren Kollincationens Proc. Imp. Acad.
Japan 17 24-28 (1941).

Matsushita Shin-ichi—: On the foundation of orders in groups, J. Inst. Polytech Osaka City Univ. Math.
2 19-22 (1951).

Michiura Tadashi: On a definition of lattice ordered groups, J. Osaka Inst. Sci. Tech. 1 27 (1949). A
condition should be added to those of a thcorem of Birkhoff.

—-: On a dcfinition of lattice- ordered groups II, J. Osaka Inst. Sci. Tech. 1 117-119 (1949). Various
aziom systems for l-groups in terms of a —+ a* = a U0 in addition lo group azioms.

—: Sur les groupes scmi-ordonnés, C. R. Acad. Sci. Paris 231 1403-1404 (1950). A theorem on G/M
where G is a commautalive non-Archimedean dean l-group and M a mazimal convez subgroup.

—: On simply ordered groups, Portugaliac Math 10 89-95 (1951). Study on a particular class of ordered
groups.

—: Remark on a representation of simply ordered groups, Nederl. Acad. Wetensch. Proc. 54 (=
Indagationcs Math. 13) 386-387 (1951).

—: Sur les groupes ordonnés I, et III, C. R. Acad. Sci. Paris 234 1422-1423 1521-1522 (1952). Study
on ‘strongly archimedean’ partly ordered groups with additional conditions.

Morita Kiiti: A ranark on the theory of general fuchsian groups, Proc. Iimp. Acad. Tokyo 17 233-237
(1941). A gencratlization of Fuchscian groups to matrices of larger degrees.

—: Ou group rings over a modular ficld which posscss radicals expressible as prindpal ideals, Sci. Rep.
Tokyo Bunrika Daigaku, A4 177-194 (1951) A necessary and sufficient condition for a ring with minimum
condition to have its radical principal as a left as well as right ideal; the group ring over an algebraically
closed ficld of charucteristic p has this condition iff G[/Opy(G) is cyclic of order prime to p.

Nagai Osannt: Note on Brauer’s theorem of simple groups, Osaka Math. J. 4 113-120 (1952). A simple
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group of order p(p — 1)(1 + np)/t having t classes of elements of order p and 1 + np Sp-subgroups with
n < p+ 2 is either LF(2,p) or LF(2,2™).

Nagao Hirosi: Uber die Bezichungen zwischen dem Erweiterungssatz von O. Schrcier und dem von K.
Shoda, Proc Japan Acad. 21 359-362 (1945/49). The eztension theories of Schreier and of Shoda are
equivalent,

—: A notc on extensions of groups, Proc. Japan Acad. 25 11-14 (1949). Let N 4 G with A=G/N and
Z = Z(N). Then, G/Z is determined by N and A: G/Z is a aubgroup of (AutN) x A.

—: On the theory of representation of finite groups, Osaka Math. J. 3 11-20 (1951). New proofs for the
orthogonality relations, for the Kronecker products and for reciprocity theorems for induced representations
which apply to the modular theory as well as for the study of representations of the group by collineations
as given Asano-Shoda and Asano-Osima-Takahasi.

Nagata Masayoshi: Note on groups with involutions, Proc. Japan Acad. 28 564-566 (1952). A group
having an involutive automorphism o fizing only the identity is abelian if anc of the following conditions
is satisfied: (a) every element is of finite order, (b) < g,0(g) > is always nilpotent, or (c) a technical
condition is satisfied,

Nagata Masayoshi, in Ito-Nagata

Nakano Hidegoré: Teilweise geordnete Algebra, Japanese J. Math. 17 425-511 (1941). A self-contained
exposition on partly ordered algebraic systems.

Nakayama Tadasi: On some modular propertics of irreducible representations of a symmetric group I
and II Jap. J. Math. 17 165-184 and 411423 (1941). The ezact power of the prime p which divides the
degree of the irreducible representation corresponding to @ Young diegram T ¢s determined in terms of
p-hooks in the first paper: although the ezplicit formula is known, great combinatorial difficulties have to
be overcome in finding the exponent of p; this is applied in the second paper for the case nf2 < p < n and
the Nakayama Conjecture is siated.

—: Notc on lattice-ordered groups, Proc. Imp, Acad. Tokyo 18 1-4(1942). Every l-group is a distributive
lattice; other theorems are proved.

—: Finite groups with faithful irreducible and directly indecomposable modular representations, Proc.
Japan Acad. 23 22-25 (1947). Natural generalizations of the Shoda-Akizuki theorem,

—: Note on faithful medular representations of a finite group, J. Math. Soc. Japan 1 10-14 (1948).
A projective indecomposable modular representation is faithful iff it contains the modular representation
obtained from a faithful irreducible nonmodular representation.

Nakayama Tadasi and Matsushima Yozo: Uber die multiplikative Gruppe einer p-adischen Divisionsalge-
bra, Proc. Imp. Acad. Japan 19 622-62 8(1943). Let D* be the mulliplicative group of a division algebra
D over a p-adic number field. Then, z € D* belongs to the commutator subgroup if the reduced norm
with respect to the center is one (as conjectured by Tannaka).
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