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Nonexistence of tight spherical designs

Akihiro Munemasa

joint work with
Eiichi Bannai
and
Boris Venkov

1 Introduction and Preliminaries

A spherical design is a finite subset X of the unit sphere $"~!' C R" which
approximates S"~! (to a certain degree ¢ € N, to be defined later). A spher-
ical t-design is called tight if it has the smallest possible nuber of points
among all ¢-designs in S"~!. Before giving the exact definition, let us list
some examples.

e A regular simplex in $"~! is a tight spherical 2-design.

e X = %Eg, where Fg C R® is the set of 240 roots (vectors of norm 2)
of the root system of type Eg. X is a tight spherical 7-design.

e X = 2A; C S, where A C R* is the Leech lattice, Ay is the set of
the 196560 shortest vectors (of norm 4) in A. X is a tight spherical
11-design.

Definition 1. A subset X C S"~! is a spherical t-design if

)= — ds
IXI;“ ) = | @
for every polynomial f(z) = f(x),x2, -+ ,2,) of degree < ¢, where

Wp-1 = / 1dS
gn-1



If X ¢ 8"! is a spherical t-design, then
n—14+1t/2 n+t/2-2
X| >
iz (" )+ (1)

n—1+(t—-1)/2
'X'ZQ( (t-1)/2 )

if t is odd. X is said to be tight if equality holds.
If X c 8! (n > 3) is a tight spherical ¢-design, then

e (Bannai-Damerell, 1979-1980) t < 5, t =7 or t = 11.

if ¢ is even, and

e (Bannai-Sloane, 1981) t = 11 = Leech.

ot <3 = classified (trivial for ¢ = 1, regular simplex for t = 2,
generalized octahedron for t = 3).

e t =5 == a derived configuration is a tight 4-design in S"~2.
e t =4 = an extended configuration is a tight 5-design in S™.

So the existence of a tight spherical 4-design in $"~2 is equivalent to the
existence of a tight spherical 5-design in S"~!. We may restrict our attention
to the existence problein of tight spherical 5- and 7-designss.
If X € S"! (n > 3) is a tight spherical 5-design, then n = 3 and X is
an icosahedron, or
n=d? -2 (d: odd)
=7,23,47,...

{(z,9) |2,y e X} = {il,ic-ll}.

For n = 7, we have the derived Ejg, and for n = 23, we have Co.3 x 2 on
276 - 2.
If X ¢ S"! (n > 3) is a tight spherical 7-design, then

n=3d*-4 =§,23,44.71,...
1
{(z.y) |z,ye X} = {O’il’i(_i}

For n = 8, we have Eg, and for n = 23, we have the derived Leech configu-
ration on 4600 points.



2 Nonexistence of Tight Spherical 7-Designs

A tight spherical (2s + 1)-design X is antipodal; i.c., X = —X, and an
antipodal subset X C S"~! is a spherical (2s + 1)-design iff

|X|Zf

for every homogeneous polynomial of degree 2,4,...,2s. For 7-designs, it
suffices to take f to be homogeneous polynomials of degree 2,4,6. Take

f@) = (0,2)%, (@, 2)", ()"

where o € R, z = (2,...,2,), and (a,z) = Y, a:z;. The conditions
derived by taking the above f are called the basic relations, and these are
given below [11, 12].

f(x) dS

sn-1

Z(a r)? = %(a,a),

rE\
3 2
IEZ\((Y &r) = m(a,(y) ,
15 s
l JEZ\((l v n(n + 2)(n + 4) (a.a)".

Suppose that X is a tight spherical 7-design. If one takes o € X, then
one obtains the consequences

n = 3d? — 4,

1
r,ye X = (z,y)= :I:l:I:IO

but not more. To derive further restrictions, the key idea is to take a in
the dual lattice of the lattice generated by X. Thus, for the convenience, we
normalize the set X in such a way that it gencrates an integral lattice. If
X C S is a tight spherical 7-design, then n = 3¢ — 4. Put D = VdX.
Then

z,y€ D = (z,y) = £d, £1,0.



Let A be the integral lattice in R" generated by D. The basic relations
become:

1 2_d
T—TIGD(QPT) - n(aa a)
1 3 0
| lmEZD( @)= (e
1 6 _ 154° 3
|D| erD(a, z) = n(n+2)(n+4) (o, )

for any a € R". Also,

_ _n(n+1)(n+2)
D] = |x] = 22

After simplification, we get

D (a,2)? = d(3d* — 2)(d® ~ 1)(a, 0)

zeD
) (0, z)! = 3d*(d* - 1)(e, 0)?
zeD
Z:(Oz,a;)6 = 5d(d* - 1)(e, 0)®
€D

for all o € R".

If (a, z) is an integer for all z € D, or equivalently, a belongs to the dual
lattice of A = (D}, then we can get some congruencial conditions. Assuine
ac AN ={aeR"|(a,0) €Z, V3 € A}
={a€eR"|(a,z) € Z, Yz € D}

DADD

For each k = 1,2,..., define ni(a) by

n(a) = %|{x €D|(a,z)==k} €Z



Then the basic relations become:

= d .
kg; (o) = 5(3(12 - 2)(d* - 1)(a, @)

k=1

had () .
Bni(a) = 5?(((12 - (o, a)?

k=1

Example 1. d = 4, n = 44 (the smallest open case). Since
D Kk = 1)(k* - 4)nk(a) =0 (mod 24)
k=1

we have
5(a, a)(5(a, a)?® — 60(a, a) + 184)

Z.
1 €

Similarly,

E2(k*-1)=0 (mod 12)
(' =1)=0 (mod 60)

give more divisibility conditions, which imply (a,a) € 2Z. We therefore
obtain

(a,a) €2Z VYa €A
= A" iseven = A” is integral
= A = A’ is an even unimodular lattice
of dimension n = 44

This is impossible, because an even unimodular lattice exists only when the
dimension is a multipie of 8, and it is not the case for 44.

Example 2. d = 5. We claim min A = 5. Suppose

a €A, (o,a0) =minA <4,



Then forVz € D, a+x € A, so

(a,a) < (axz.atzx)
= (o, ) £ 2(ev,x) + 5

Thus

5

< =
(@)l < 5
(a,z) € {0, 1, £2}

This means .

Z k" ng(a) becomes ny () + 2" ny(a)
k=1

This situation has been investigated by Martinet in a different context [9].

ny(a) + 4nq(a) = 3880(a, a)
ny(a) + 16na(a) = 900(a, a)?
ny(a) + 64ng(a) = 300(a, a)®

Eliminating n,(a), na(a) from these equations, we find a quadratic equation
in (a, a) which has only imaginary solutions. This is a contradiction.

Example 3. d = 6, n = 104 (still open).
e A is even unimodular.
e minA =06, Ag = D.
o Ag =0

o Y, = 1+385840¢" + 153139896000¢° + - - - (uniquely determined mod-
ular form).

We now state our main result for the nonexistence of tight spherical 7-
designs. Let p a prime. For mn € Z, define

vp(m) = the largest integer v such that p”|m



Theorem 1. Let d > 1 be a positive integer, and suppose
r(d) =2, w(d(d® = 1)) < 4,
vp(d(d® — 1)) <3 Yprime p > 5.
Then a tight spherical T-design in dimension n = 3d? — 4 does not cxist.

Proof. (Sketch). The lattice A becomes an even unimodular lattice of di-
mension n, but n =4 (mod 8), a contradiction. O

Pétermann pointed out that the set of positive integers d satisfying the
hypothesis of Theorem 1 has positive density in N (in particular, is infinite).

3 Nonexistence of Tight Spherical 5-Designs

For spherical 5-design X, we have

for any a € R".
Suppose that X is a tight spherical 5-design. If one takes a € X, then
we obtain the conscquences

n=d*-2,d=2m+1

1
r,yeX = (z,y)= :tl,:t(—l
As we have done for tight spherical 7-designs, we normalize X to define an
integral lattice A, and then take o in the dual lattice of A. If X ¢ S}
(n > 3) is a tight spherical 5-design, then n = d? - 2, d = 2m + 1. Put
D = VdX. Then

z,y€D = (z,y) = xd, 1

Let A be the integral lattice in R" generated by D. The basic relations read:
1 , d

_ Y = 2o
D] TED(Q,.L) n(a,a)
WIED((I, .L) = 71(7_*_—2)((,1,(1)



for any o € R”, and
|D| = |X]| = n(n+1).

After simplification, we get

Z(a,:ﬂ)2 =4m(m + 1)(2m + 1)(a, )
zeD

Z:(a,:zr)4 = 12m(m + 1)(q, a)?

zeD

If o € A", then

i k*ngi(a) = 2m(m + 1)(2m + 1)(, @)
k=1
i k'ng(a) = 6m(m + 1)(a, a)?
k=1
Since k1 — k%2 = 0 (mod 12), we have

m(m + 1)(a, a)(3(a,a) — (2m + 1))

Z
5 €

This is much weaker than the divisibility condition for tight 7-designs, but
we can get the following consequence:

1
m,m + 1 : square-free = (a,a) € §Z

To get more restriction, we consider some other lattices related to A.

A D A, : even sublattice
={a€A|(a,a) € 2Z}
is a sublattice of index 2 in A
1

V2

Then I' is an integral lattice and

F = 1\+

detI’'=2-3° (s€Z,s20)



Theorem 2. Suppose

m=2k, k=2 (mod3),
k,2k + 1 are square-free.

Then there does not exist a tight spherical 5-design in R"*, where n = (2m +
1)2 -2,

The proof of this theorem is more complicated than that of Theorem 1,
and requires the Milgram-Braun formula [10].

Example 4. The case m = 3 (n = 47) is not ruled out by Theorem 2. We
give an outline of the proof of the nonexistence in this case. Suppose that
there exists a tight spherical 5-design in R*’. Then

[ ¢ R' has determinant 2
= I c R* : even unimodular, by gluing

= 9 is a modular form of weight 24
with respect to SL(2,Z)

But the analysis of the coefficients of J reveals that J; can not be expressible
as a linear combination of a known basis of the space of modular forms of
weight 24. This is a contradiction.

We originally hoped to construct one in R¥. Let X be a tight spherical
5-design in R*7. Then a derived configuration (a hyperplane section of X} is
a tight 4-design Y, |Y| = 1127. Angles among the elements of Y defines a
strongly regular graph:

1 320
165 320

1 320

Then Venkov showed that the subgraph induced by “165” is a generalized
quadrangle of order (4, 8).

Could our technique be applied to establish the uniqueness of a general-
ized quadrangle of order (4, 8)?



References

[1] E. Bannai and E. Bannai, Algebraic Combinatorics on Spheres, Sprin-
ger-Verlag, Tokyo, 1999 (Japanese).

[2] E. Bannai and R. Damerell, Tight spherical designs, I, J. Math. Soc.
Japan 31 (1979), 199-207.

[3] E. Bannai and R. Damerell, Tight spherical designs, II, J. London Math.
Soc. (2) 21 (1980), 13-30.

[4] E. Bannai and N. J. A. Sloane, Uniqueness of certain spherical codes,
Canad. J. Math. 33 (1981), 437-449.

[5] J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups,
3rd ed., Springer-Verlag, New York, 1999.

[6] P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs,
Geometriae Dedicata 6 (1977), 363-388.

[7] J.-M. Goethals and J. J. Seidel, Spherical desigus, Proc. Sympos. Pure
Math., XXXIV, 255-272, Amer. Math. Soc., Providence, R.1., 1979.

[8] J.-M. Goethals and J. J. Seidel, The regular two-graph on 276 vertices,
Discrete Math. 12 (1975), 143-158.

[9] J. Martinet, Sur certains designs sphériques liés a des réseaux en-
tiers, in: Réseaux Euclidiens, Design Sphériques et Formes Modu-
laires, Autour des travaux de Boris Venkov, J. Martinet (ed.), 135-146.
L’Enseignement Math., Geneve, 2001.

[10] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-
Verlag, 1973.

[11] G. Nebe and B. Venkov, The strongly perfect lattices of dimension 10,
J. Théor. Nombres Bordeaux 12 (2000), 503-518.

[12] B. Venkov, Résaux ct designs sphériques, in: Réseaux Euclidiens, Design
Sphériques et Forines Modulaires, Autour des travaux de Boris Venkov,
J. Martinet (ed.), 10-86. L’Enseignement Math., Geneve, 2001.



SIEGEL MODULAR FORMS, GRASSMANNIAN DESIGNS,
AND UNIMODULAR LATTICES

CHRISTINE BACHOC AND GABRIELE NEBE

ABSTRACT. Siegel theta series with harmonic coefficients are vector-
valued Siegel modular forms. We use them to show that certain sections
of lattices form designs in Grassmannian space.

1. INTRODUCTION

In [2], a notion of t-design on the Grassmann manifold G, » is introduced,
generalizing the so-called {antipodal) spherical designs. Many examples of
such designs arisc from lattices, the most famous ones being the designs
associated to the root lattice Egz and the Leech lattice. In both cases, these
designs can be explained by properties of the representations afforded by
their automorphism groups. In the case of the spherical designs, another
proof, due to Boris Venkov, uses the theta series of these lattices as modular
forms. Such an argument has been applied successfully to other families of
lattices (see [15] and [3]).

In this paper, we prove a similar connection between the Grassmannian
designs and certain vector-valued Siegel modular forms associated to a lat-
ticee. By using the explicit description of certain spaces of vector-valued
Siegel modular forms, we can prove the existence of Grassmannian designs
in the family of the extremal even unimodular lattices of dimension 32.

2. GRASSMANNIAN DESIGNS

2.1. Definitions. We briefly recall here the notion of Grassmannian de-
signs. For a more detailled presentation, the reader is referred to [2].

Let G n denote the real Grassmannian space of m-dimensional subspaces
of R*, together with the transitive action of the real orthogonal group
O(n,R). The starting point is the decomposition of the Hilbert-space of
complex-valued absolutely squared integrable functions L?(Gy; ») under the
action of O(n, R). As an O(n, R)-module:

(1) L? (gm.n) = @By H‘y‘n,n

where the sum is over the partitions g = y; > -+ > py, > 0 with even

parts #; = 0 mod 2. The spaces Hf, , are isomorphic to the irreducible

Date: January 8, 2003.
1991 Mathematics Subject Classification. 11H0G,
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representation Vi’ (see [6]) of O(n,R) canonically associated to u. The
degree of the partition p is by definition deg(y) := Y, pi.

Definition 2.1. A finite subset X of Gy is called a t-design if one of the
following equivalent properties is satisfied:

1. For all f € HE, , and all p with 0 < deg(p) < t,

Joun [PV = 13 L x f(2).
2. For all f € H, | and all p with 2 < deg(p) <t, ), x f(z) =0.

There is a nice characterization of the designs in terms of the zonal func-
tions of G n: It is a classical fact that the orbits under the action of
O(n,R) of the pairs (p,p) of elements of G, n are characterized by their
so-called principal angles (6y,...,0r,) € [0,7/2]™. We denote y; := cos?(6;).
The polynomial functions on Gy n X G which are invariant under the
diagonal action of O(n,R) are polynomials in the variables (y,...,ym)-
They form an algebra isomorphic to the algebra C[Y;,...,Yy]°" of sym-
metric polynomials in m variables. Moreover, there is a unique sequence
of polynomials p,(Y1,...,Yn) indexed by the partitions into even parts,
such that C[Yy,..., Y] = E”Cpu, pu(l,...,1) = 1, and the function :
P € Gmn = pu(n(p,P),- - ,ym(p, ') defines, for all p’ € G s, an element
of H, .. These polynomials have degree deg(x)/2. They are explicitely
calculated in [8].

Theorem 2.2. (see [2, Proposition 4.2]) Let X C Gmpn be a finite set.
Then,

1. Zp‘p'ex pﬂ(yl(p’pl)’ e ,ym(P,P')) 2 0.
2. The set X C G 5 is a t-design if and only if for all p, 2 < deg(p) < t,

Zp‘p'ex pﬂ(yl (P’P')’ e ,ym(p,pl)) =0.

2.2. Some subsets of G, associated to a lattice. Let L C R* be a
lattice. We define certain natural finite subsets of G,, , associated to L, in
the following way. The spaces of m x m real symmetric, real positive defi-
nite, and real positive semi-definite matrices are denoted by S, (R), S22(R),
Sz'(R), respectively.

Definition 2.3. Let S € S;)(R). We denote Lg the set of p € Gmp such
that pN L is a lattice, having a basis (vy,...,vm) with v;-v; = S; ;.

Clearly, the sets Lg are finite sets. In the case m = 1, the sets Lg are
the sets of lines supporting the primitive lattice vectors of fixed norm. It is
worth noticing that these sets are unions of orbits under the automorphism
group of the lattice.

We introduce a few more notations. An m-tuple of vectors of R is de-
noted by v(™) and the Gram matrix of its vectors by gram(v(™)). The real
vector space spanned by these vectors is Ru(™) . If the vectors of v{™) belong
to the lattice L, and consist of a Z-basis of LNRy(™) , v(™) is called primitive.
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One of the aims of this paper is to study the design properties of the sets
Lg. Therefore, we have to consider sums of the type }_,c, . f(p) where f
runs over the spaces HY, ..

Lemma 2.4. The following assertions are equivalent:
1. For all S € S;0(R), Y pep  f(P) =0

2. Forall S € S;O(R), Zu(m)GLm’pr‘-m“wef(R‘v(m)) =0
gram(v(™))=8
3. Forall S € S;O(R), Z om)gpm f(]R'U(m)) ={
gram{v(™))=§

Proof. Two bases of the lattice L N p with the same Gram matrix are ex-
changed by an element of the automorphism group of L N p, so the second
sum differs from the first by a multiplicative factor. In the third sum,
the non primitive (™ contribute to subsums of the type 2pelL s f(p) with

det(S’) < det(S) so we can conclude by induction on det(S). O

Remark 2.5. With the help of representation theory of the automorphism
group, one finds examples of lattices L such that all the (non empty) sets Lg
(with rank(S)< %ﬂ ) are Grassmannian k-designs (see [2]). For the root
lattices Dy, Eg, E7 one can take k = 4, for Eg and the Barnes- Wall lattice
BWjig, k =6 and even k = 10 for the Leech lattice Asy.

It turns out that the sums of Lemma 2.4(3) can be interpreted in terms
of certain vector-valued modular forms. The next section recalls the basic
properties of these modular forms.

3. VECTOR-VALUED SIEGEL MODULAR FORMS

Let H,, denote the Siegel space

(2) Hy:={ZeM™ ™) |2'=2,Z=X+iY and Y > 0}

endowed with the usual action of the symplectic group Sp(m,R). If M :=
(4 8) € Sp(m,R) and Z € Hy, then M.Z := (AZ + B)(CZ + D).

Let (p,V,) be a finite dimensional complex representation of GL(m,C).
A V,-valued Siegel modular form for the modular group I'y, := Sp(m, Z) is
a holomorphic function f : H,, — V, satisfying the transformation formula
flp M = f forall M €Ty,, where

(f lp M)(2) := p(CZ + D)~' f(M 2)

(plus a condition on the growth of f in the case m = 1). Such a modular
form has got a Fourier expansion of the type:

(3) £(2)=3"as(S)e(S2)
S
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where e(SZ) := ei7trace(52) and § runs over the set of even symmetric
positive semi-definite matrices SE¥e" := {S € S,Z,P(]R) | Si; €Zand S;; =0
mod 2}.

One can restrict without loss of generality to the case when the represen-
tation p is irreducible. Then, it is characterized by its highest weight, an
m-tuple g := (g1,...,tm) With gy > -+ > py, and we may denote (p,, V)
this representation.

The vector space [y, p] of these modular forms is finite dimensional.
The classical case of complex-valued Siegel modular forms corresponds to
the one-dimensional representations; the spaces inay be denoted [I"m,detk]
or more briefly [['y,, k]. The direct sum A(Tsm) := ®r=0 mod 2[Tm, k] is a C
algebra, the structure of which is completely understood only for m = 1,2, 3.
For an arbitrary representation p, the sum A(T'm, p) := @x=0 mod 2[['m, det* @p]
is a module over the previous algebra. Its structure is completely described
in the cases m = 2 and p = [2,0], [4,0],[6,0] (see [12], [7]).

Such modular forms can be constructed from lattices, in the following
way (see [4] and [5] for detailed proofs). Let L be again an n-dimensional
lattice contained in R™. The theta series of degree m < n/2 associated to L
is:

(4) o= 3 e52)= Y ai(S)e(S2)
lmepm sesgen

S:=gram(v(™))

where a7 (S) counts the number of (™) € L™ with gram(v(™) = S. Then

02’") is a Siegel modular form for some congruence subgroup, which can be
taken to be the full modular group T',, = Sp(m, Z), if the lattice L is even
unimodular. The weight of G(Lm) is equal to n/2 (i.e. they are modular forms
for the representation p = det™/?).

More generally. one can construct vector-valued modular forms from a
lattice L and some spaces of harmonic polynomials.

Let C[X] denote the polynomial algebra in the matrix variables (X; ;)1<i<m,
1Z4<n

<J
with the action of GL(mn,R) x GL(n,R) given by (g,h).P = P(g*Xh). The
decomposition of this space is well-known to be:

(5) CX] =&, ® FY

where F}, denotes the irreducible GL(mn, R)-module canonically associated
to the partition p = (g1,..., 4m) with gy > -+- > gy > 0. The harmonic
polynomials are the polynomials belonging to the intersection of the kernels
of the operators
n
32
6 A= _
(6) "J ; 8X,-,k3Xj,k

Their space is denoted Hp, , and is stable under the action of GL(m,R) x
O(n,R). Its decomposition is given by
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(7 Hrmp ~GLmR)x0(n,7) D Fia ® V¥
i
Equivalently, the polynomial functions: P : M™**(C) — F} satisfying
pu(w)P(X) = P(utX) for all u € GL(m,R) span a vector space, O(n, R)-
isomorphic to V4'. We shall denote it Harm}, ;..

Definition 3.1. Let L C R" be a lattice and P € Harmf, . For m < § let

®) op= Y P0™e(S2)
pimlepm
Si=gram(v(™))

where P(v(™)) stands for the value of P on the m x n matriz Xymy, the

rows of which are equal to the m vectors of v(™). 92”",3 is called the harmonic
Siegel theta series of L with coefficients P.

Proposition 3.2. ([5]) If L C R" is an even unimodular lattice and P €
Harm}, ,, then 02’:‘} € [Tm,det™?®p,] is a vector valued Siegel modular

form for the full modular group.

4. HARMONIC THETA SERIES AND (GRASSMANNIAN DESIGNS

In this section we show how harmonic Siegel theta series can be used to
show that certain sets Lg of sections of a lattice L provide Grassmannian
designs.

Theorem 4.1. Let L C R" be an even latlice, and let m < nf2. Assume
that, for all P € Harmf, ,, and all even p with 2 < deg(u) < ¢, Bg’",l = 0.

Then, for all my < m and all § € S,?,g(lR), the non emply sets Ls are
t-designs.

Proof. The space (Fi)°™R) of O(m,R)-invariant elements in F& is one-
dimensional if and only if y is even. We denote v, an arbitrary non-zero
vector of this space. We choose on Fj; an O(m, R)-invariant hermitian form,
denoted by <, >, and we can assume v, to be of norm 1 for this form. If P €
Harmf, , let Pp : M™**(C) — C be defined by: Pp(X) :=< P(X),v, >.
By construction, the function Py is O(m, R)-invariant and therefore defines
an element Py of L?(Gm,n) by: Po(p) := Po(Xp), where X, is the matrix
of any orthonormal basis of p. The mapping P — P, is an isomorphism of
O(n, R)-modules from Harm¥, , to H, .

Let S € S;°" be of rank m. There exists U € GL(m,R) such that
S = UU". From the hypothesis, we have, for all P € Harm#, ,,,

> Pe™)=0.

vimerm
S:=gram(v(™))
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Since p,((U~1)!)P(v(™) = P(U~' X (m)), and since U~' X (m) is the ma-
trix of an orthonormal basis of the space Rv(™), we conclude that

Y B(Re™)=0.
vimlegrm
S:=gram(v(™))
From Lemma 2.4, the set Lg is a t-design. The assertion on the other
my < m derives from the same argument applied to the successive images

of 02,",2 by the ®-operator. 0

In order to apply the previous theorem to concrete situations, we need
to study the spaces of vector-valued modular forms. The next proposition
shows that in general we only need to study the cusp forms. The space of
cusp forms is the space of forms f € [y, p] for which a;(S) = 0 for all the
matrices S of rank smaller than m, and is denoted [['r,, so-

Proposition 4.2. Assume that, for all mg < m, and for all S € S>° (B),

the non empty sets Lg are t-designs. Then, the modular forms 0(m+l) are

cusp forms, when P is associated to a partition y with either Ilm+1 >0 or
m
i=1 Bi S t.

Proof. If S € S&%1 is such that Spiim+1 = 0, and if S = UUY, then
the last row vector up,4+1 of U equals 0. One has AU = U, with A the
diagonal matrix with 1 on the diagonal except the last coefficient equals 0.
If PeHy, ,, PU) = P(AU) = pu(A)P(U) = 0 if pmy1 > 0 (in that
case, det divides p,). On the other hand, the polynomial P restricted to the
matrix variables X;; with X;4) ; = 0 belongs to a subspace isomorphic as

a GL(m, R)-module to F¥*"***=)_ and is harmonic in these variables. Hence

the design property implies that the coefficients of 0( + ) corresponding to
matrices S with S;41,m+1 = 0 and of rank m are equal to zero. We can
iterate the same argument to obtain the nullity of the coefficients associated
to matrices S of lower rank.

5. EVEN UNIMODULAR EXTREMAL LATTICES

Let L be an even unimodular lattice of dimension n = 24¢+8r (r = 0,1, 2).
Since its theta series 8; belongs to the space [['1,n/2], and since, as is
well-known, the algebra of modular forms A(T";) = C[E;, Eg), the following
bound holds for the minimum of L:

9 min(L) < 2[n/24] + 2

A lattice is called (analytically) extremal, if its minimum attains this
bound. This notion can be defined for other families of lattices, see the nice
survey paper [10]. Extremal even unimodular lattices are only known for
n = 8,16, 24,32, 40, 48, 56, 64, 80 and are completely determined only up to
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n = 24 (where the unique Leech lattice satisfies this bound). In dimension
32, they form a huge family, among which 5 of them are constructed from
extremal binary codes. In dimension 48, which is the first dimension for the
minimum 6, only three of them are known. The question of the existence of
such a lattice in dimension 72 (hence of minimum 8) is still opened.

Let S € S;2(R), we denote min(S) := min{zSzt,z € Z™ z # 0}. Let f
be a non zero cusp form; we define m(f) := %min{min(S) | af(S) # 0}. We
set m(0) = +oo. For example, if f = 02}),, clearly m(f) > min(L)/2. In the
case of degree one, due to the explicit description of [I'y, k], it is easy to see
that:

(10) if £ £0, m(f) < k/12

where k is the weight of f. Applied to the forms f = 09‘),,, it leads to the
result, due to Boris Venkov, that the sets Lg associated to extremal lattices
(here Lg = Lyg) is the set of lines supporting lattice vectors of given norm
a) support designs of strength 10 — 4r. We introduce the following notation:

(11) min([Tyn, o) := max{min(f) | f € [Tm, &]o}-

We now consider the question of the generalization of this result to the
higher degree Grassmannian designs contained in extremal even unimodular
lattices. For the Ejg lattice and the Leech lattice, the properties of their
automorphism groups prove that they do contain respectively 6- and 10-
Grassmannian designs (see [2]). So, the first interesting case is the case of
dimension 32.

We now restrict to the case m = 2, and give the numerical results obtained
by the explicit calculations of the spaces [, u]p for p, = det!® ®p,, where
v runs over partitions of small degree. A formula for the dimensions of these
spaces is given in [13].

|| 0 2 4 6 8 10
v (0) | (2,0) | (4,0} [ (6,0) | (8,0) | (10,0)
dim([Tyn, o) | 2 2 3 5 7 8
min([T; 4]o) 2 | 2 | 2 |29 2
v (2,2) | (4,2) | (6.2) | (8,2)
dim([T'm, 4)o) 2 | 2 | 4 | 7
min({Cpur 1) 2 | 2 | 2| 4
v (4,4) | (6,4)
dim([Tym, o) 3| 3

Corollary 5.1. For all 32-dimensional even unimodular lattices of mini-
mum 4 and all S of rank < 2 the non-empty sets Lg are 6-designs.



CHRISTINE BACHOC AND GABRIELE NEBE

REFERENCES

[1] C. Bachoc, E, Bannai, R. Coulangeon, Codes and designs in Grassmannian spaces

[2] C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmannian spaces and lattices,
J. Algebraic Combinatorics 16 (2002), 5-19

[3] C. Bachoc and B. Venkov, Modular forms, lattices and spherical designs, in “Ré-
seaux euclidiens, “designs” sphériques et groupes™, J. Martinet, éd., L'Enseignement
Mathématique, Monographie no 37", Genéve (2001), 87-111.

|[4] E. Freitag, “Siegelsche Modulfunktionen”, Springer-Verlag, 1983.

[5] E. Freitag, Thetareiken mit harmonischen Koeffizienten zur Siegelschen Modulgruppe,
Math. Ann. 254 (1980), 27-51.

[6] R. Goodman and N. R. Wallach, Representations and invariants of the classical
groups, Encyclopedia of Mathematics and its Applications 68, Cambridge Univer-
sity Press, 1998.

[7] T. Ibukiyama Vector valued Siegel modular forms of det* Sym(4) and det* Sym(6),
preprint.

[8] A.T. James and A.G. Constantine, Generalized Jacobi polynomials as spherical func-
tions of the Grassmann manifold, Proc. London Math. Soc. (3) 29 (1974), 174-192.

[9] C. Poor and D.S. Yuen Linear dependence among Siegel modular forms Math. Ann.
318 (2000), 205-234.

[10] R. Scharlau, R. Schulze-Pillot, Eziremal lattices In Algorithmic algebra
and number theory. edited by B. H. Matzat, G. M. Greuel, G. Hiss.
Springer (1999), 139-170. Preprint available under www.matha.mathematik.uni-
dortmund.de/preprints/welcome.html

[11] R. Salvati Manni, Slope of cusp forms and theta series, Journal of Number Theory
83 (2000), 282-296.

[12] T. Satoh, On certain vector-valued Siegel modular fortns of degree two, Math. Ann.
274 (1986), 335-352.

[13] R. Tsushima, An ezplicit dimension formula for the spaces of generalized Siegel mod-
ular forms with respect to Sp(2, Z), Proc. Japan Acad. Ser. A Math. Sci. (569)4 (1983),
139-142.

(14] B. Venkov, Réseauzr et designs sphérigues, in “Réscaux euclidiens, “designs”
sphériques et groupes, J. Martinet, éd., L’'Enseignement Mathématique, Monogra-
phie no 37", Genéve (2001), to appear.

[15] B. Venkov, Even unimodular eztremal lattices, Proc. Steklov Inst. Math. 165 (1984),
47-52.

(16] R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichtes, Crelle 343
(1983), 184-202.

C. BAacHoC, LABORATOIRE A2X, UNIVERSITE BORDEAUX 1, 351, COURS DE LA LIBE-
RATION, 33405 TALENCE FRANCE
E-mail address: bachoc@math.u-bordeaux.fr

G. NEBE, ABTEILUNG REINE MATHEMATIK, UNIVERSITAT ULM, 89069 ULM, GER-
MANY
E-mail address: nebe®mathematik.uni-ulm.de






Part 0. Outline.

The goal of this talk is to provide an introduction to my joint papers with
Harold Stark on zeta and L-functions of graph coverings [4dvances in
Math., 121 (1996) and 154 (2000)]. The motivation is to treat the graph
zeta functions the same way as the number theory analogs. This requires
a discussion of the graph theoretic version of Galois theory which is to be
found in the 2™ Advances paper. Here we will not discuss the Galois
theory but instead focus on examples and computation. The following
picture shows the tree of zetas with the zetas appearing as roots of the
tree. The branches indicate the parallel fields that benefit from these
roots. Here we consider only the 2 fields of algebraic number theory and
graph theory. In part 1, we discuss zeta and L-functions of algebraic
number fields. More details for part 1 can be found in

H. M. Stark, Galois theory, algebraic number theory & zeta

functions, in From Number Theory to Physics (editors M.

Waldschmidt et al), Springer-Verlag, 1992.
In part 2, the graph theory analogs are to be found. There are actually 3
kinds of graph zetas (vertex, edge and path). We will attempt to extol the
computational advantages of the path zetas. The path and edge zetas have
many variables and do not appear to have number theory analogs as yet.

Some History.

The theory of zeta functions of algebraic number fields was developed by
Riemann (mid 1800s) for the rational number field, then Dedekind,
Dirichlet, Hecke, Takagi, and Artin (early 1900s). Graph zeta functions
appeared first from the point of view of p-adic groups in work of Ihara in
the mid 1960s. Then Serre realized the graph theory interpretation.
Papers of Sunada, Hashimoto and Bass further developed the theory. In
particular, see Hashimoto, Adv. Stud. Pure Math., 15, Academic, 1989,
pages 211-280. More references can be found in the Advances papers
mentioned above, as well as my book, Fourier Analysis on Finite Groups
and Applications, Cambridge, 1999.






Part I. The Algebraic Number Theory Zoo of
Zetas.

Riemann zeta, for Re(s)>1,

c) =% == I (-r7)"

n=1 p=prime

Riemann extended to all complex s with pole at s=1.
Functional equation relates value at s and 1-s
Riemann hypothesis

duality between primes and complex zeros of zeta
- prime number theorem
» See Davenport, Multiplicative Number Theory.

Dedekind zeta of algebraic number field K=Q ()
0 a root of a polynomial with coefficients in Q
prime = prime ideal p in Ok, ring of integers of K
infinite product of terms (1-Np™)?’,
where Np = norm of p = #(Ok/p)

prime ideal theorem
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associated to a compact Riemannian manifold M=I"\H
H = upper half plane with ds’=(dx*+dy?)y™

I'=discrete subgroup of group of real fractional linear
transformations

primes = primitive closed geodesics C in M
of length v(C)
(primitive means only go around once)

Duality between spectrum of Laplacian Aon M &
lengths closed geodesics in M

Z(s) = H H( ]— g VO )

[C1 =20

Riemann hypothesis known to hold
Prime geodesic theorem
Z(s+1)/Z(s) is a closer analog of {(s)

We won’t say more about this zeta here.

References:
D. Hejhal, Duke Math. J., 43 (1976); A. Terras, Harmonic
Analysis on Symmetric Spaces & Applics., I, Springer, 1985



field ring prime ideal  finite field

g=# of such p
K=0 (\2) Ox=2[V2] 0> pOk Ox/ p
2 f=degree
F=0Q y/ pZ Z/pz

3 CASES

1) pinert: £=2. pOg=primeideal, 2 # x*(mod p)
2) psplits: g=2. pOk= pp' , 2 =x* (mod p)
3) p ramifies: e=2. p=p?, p=2

Gal(K/F)={1,-1},
Frobenius automorphism = Legendre Symbol =

) -], incase |
(—}= I, incase2
P 0, incase3

p odd implies p has 50% chance of being in Case 1



Zeta and L-Functions for Example 1

Dedekind Zeta
Cx(s)= l:[(l =N5*)" product over prime ideals in Og

Riemann Zeta
Ce ()= 1:[(1 -Np~ ) product over primes in Z
Dirichlet L-Function
L(s,x)=1:[(l—x(p)p" )", where x(p)=[§]

product over primes in Z
Factorization
CQ (,\/5) (S) = CQ (S)L(SS X)

Functional Equations:  {g(s) related to {(1-s)
Hecke
Values at 0: £0)=-172, Cx(0)=-hR/w

h = class number (measures how far Ok is from having
unique factorization) =1 for Z[V2]

R = regulator (determinant of logs of units)
= log(1+V2) when K=Q (\2)

w = number of roots of unity in K is 2, when K=Q (\/2)



Statistics of Prime Ideals and Zeros
# from information on zeros of {(s) obtain
prime ideal theorem
X

logx

#{p prime ideal in O, | Np< x} ~ , a8 X — 00

# there are an infinite number of primes such that [%]=1.

# Dirichlet theorem: there are an infinite number of primes
p in the progression a, a+d, a+2d, a+3d, ...., when
g.c.d.(a,d)=1.

# Riemannn hypothesis still open:

GRH or ERH: {(s)=0 implies Re(s)=1/2,
assuming s is not real.
References: Lang or Neukirch, Algebraic Number Theory

See the pulchritudinous primes website for some interesting
pictures made using programs involving primes, including
prime island. The site belongs to Adrian J. F. Leatherland and
the address is:

yoyo.cc.monash.edu.au/~bunyip/primes



KoF>oQ number fields with K/Q Ga101s
Ok D Of D Z rings of integers

P Dp>DpZ primeideals (p unramified,

i.e., P ° does not contain p)

K/F
Frobenius Automorphism [p— )= ce Gal(K/F)

o, (x)=x"?(modP ), for xe 23
when p is unramified.
6, determined by p up to conjugation if P /p unramified
f(P /p)=orderof 6, =[Ok /P : Op/p]
Artin L-Function for s C, 1t is a representation of Gal(K/F)

L(s,n:)"="]‘[[1— {K P/ F JNp"}

P
where means we only give the formula for unramified
primes p of F. Here we pick P a prime in Oy dividing p,

[ Y ,,




Applications
¢ Factorization
Le()= J] Lsm)™

irreducible
degree d,,

8 Chebotarev Density Theorem -

V o in Gal(K/F), 3 oo -ly many prime ideals p of O
such that3 P in Ok dividing p with Frobenius

[ K/F )

— =O'

P

$ Artin Conjecture: L(s,%) entire for non-trivial

irreducible rep 7
¢ Stark Conjectures: 7 not containing trivial rep

> lim s°L(s,7) = ©(r) * R(x)

= algebraic number * determinant of axa matrix in linear
forms with alg. coeffs. of logs of units of K and its conjugate
fields /Q.

References:

Stark's paper in From Number Theory to Physics, edited by
Waldschmidt et al

Stark, Adv. in Math., Advances in Math., 17 (1975), 60-92
Lang or Neukirch, Aigebraic Number Theory




Chebotarev Density Theorem for K/Q normal.
For a set S of rational primes, define the analytic density of S

p
lim ", .
log (s - l)

L(s,t) continues to s=1 with no pole or zero if T#1, while
L(s,1)={(s)=Riemann zeta.

In the following proof, one needs to know that

Theorem. For every conjugacy class C in G=Gal(K/Q),

the analytic density of the set of rational primes p such
that C(p)=the conjugacy class of the Frobenius auto of
a prime ideal P of K dividing p is |C//|G|.

Proof. Sum the logs of the Artin L-functions X conjugate of
characters ; over all irreducible reps © of G. As s— 1+,

1
1ogE ~ Y log L(s,7)x,(C)

~ 2 Zx,, (C(p)p~ x,(C)

|G|zp

C(p) C

by the orthogonality relations of the characters of the
irreducible representations © of G. Here C(p) denotes the
conjugacy class of the Frobenius auto of the prime of K above

\\/'
p-



Example 2. Galois Extension of Non-normal Cubic

field ring prime ideal finite field
g(P /p) =#ofsuch p
K=F(@™") Oy P OW/P
. |
F=0 (¥2) o, D Oylp
> | | |
Q Z PZ Z/pz

f(r /p)=degree(O«/P :0/p)

More details are in Stark’s article in From Number Theory to Physics,
edited by Waldschmidt et al

Splitting of Rational Primes in Of

Type 1. pO= p; p: P53, with distinct p; of degree 1 (p=31 is
1st example), Frobenius of prime P above p; has order 1

density 1/6 by Chebotarev
Type 2. pOy= pi1 p:2, with p; of degree 1, p; of degree 2 (p=5

is 1st example), Frobenius of prime P above p; has order 2

density 1/2 by Chebotarev
Type 3. pO= p, with p of degree 3, (p=7 is 1st example),

Frobenius of P above p; has order 3
density 1/3 by Chebotarev



Part II. The Graph Theory Zoo of Zetas

References:
¢ Harold M. Stark and Audrey Terras, Adv. in Math., Vol.

121 (1996); Vol. 154 (2000)

¢ K. Hashimoto, Internatl. J. Math., 1992, Vol.3.

Definitions.
Graph Y an unramified covering of Graph X
means (assuming no loops or multiple edges)
n:Y—X is an onto graph map such that
for every xe X & for everyye ' (x),
7t maps the points z € Y adjacent to y
1-1, onto the points w € X adjacent to x.

Normal d-sheeted Covering means:
3 d graph isomorphisms
81 5eeey 24 MappingY - Y
such that ®wg;(y)=n(y)forallye Y
The Galois group G(Y/X) ={ g1 seees 84 }-

Note: We do not assume graphs are regular!



How to label points on Y
covering X with Galois
group G=Gal(Y/X)

Second make n=|G]|
copies of the tree in X.
These are the sheets of

Y. Label the sheets
with ge G. Then
g(sheet h)=sheet(gh)
i: g(a,h)=( c.,gh)
(.g) g(path from (o,h) to (B.j)) =

path from (o,gh) to (B,gj)

First pick a spanning
tree in X (no cycles,
connected, includes all

X : vertices of X).
o




This is analogous to Example 1 in Part 1.

Cube
/ "
@
covers

Tetrahedron '

Spanning Tree in X is red.
Corresponding sheets of Y are also red




"PRIMES in GRAPHS” are

equivalence classes of closed backtrackless
tailless primitive paths

DEFINITIONS
backtrack Q«e—a—

equivalence class: change starting point

Here o is the start of the path

non-primitive: go around path more than
once



bn Py d"
D .\C" a/
prime —g
above 1
C of
length 6 / ®
/ dl b!\
w @ \
a C
C
C prime of
length 3
@

Picture of Splitting of Prime
which is inert; i.e., =2, g=1, e=1
1 prime cycle D above, & D is lift of C°.



Example of Splitting of Primmes

in Quadratic Cover, g=2
d"
C'
covers
C
Tetrahedron
o
a d

Picture of Splitting of Prime which splits
completely; i.e., =1, g=2, e=1
2 primes cycles above



Ca“prime”in X, DaprimeoverCinY

Frob(D) = [ Y""]= ji' € G=Gal(Y/X)

D

where ji’' maps sheet i to sheet

(o)) C the unique lift of C
in Y starting at

(aui)

L

C not necessarily
closed
V(Z‘) =v(C)
s ( D the prime
above C is
closed)

(os,i)

v

Exercise: Compute Frob(D) on N
pl‘eceding pages, G={l,g}. preceding page: 1.

page before that: ¢




Properties of Frobenius

1) Replace (0,,i) with (0,hi). Then
Frob(D) = ji' is replaced with hji'h™.
Conjugacy class of Frob(D) € Gal(Y/X)
does not change.

2) Varying o does not change Frob(D).

3) Frob(D)' = Frob(D)'.

p = representation of G=Gal(Y/X), ueC, |u| small

~1
L(u,p,Y/X)=1‘[det[1_ p(Y_/Di)um)

[C]

[C]=equivalence class of primes of X
V(C)=length C, D a prime in Y over C



Copy from Lang, Algebraic Number Theory

1) L(u,1,Y/X) = {(u,X)
= Jhara zeta function of X
(our analogue of the Dedekind zeta
function, also Selberg zeta function)

2)
(@, Y)=T]L(up,Y/X)"

peG
product over all irred. reps of G,
dy=degreep
3) You can prove & (u,X)" divides {(u,Y)™
directly and you don't need to assume
Y/X Galois.

Thus the analog of the Dedekind
conjecture for zetas of algebraic number
fields is proved easily for graph zetas.




L(u,p, Y/X)'1
=(1-u*)""% det(I'= A", u+Q'u*)

r=rank fundamental group of X = |E|-|V|+1
p= representation of G = Gal(Y/X), d = d, = degree p

Definitions. ndxnd matrices A/, Q/, I, n=|X|
nxn matrix A(g), g € Gal(Y/X),
has entry for o,pe X given by

(A(€))ap =# { edges in Y from (o) to (B.g) }
Here e=identity of G.

=D, A(2)®p(g)
geG
Q = diagonal matrix, jth diagonal entry
= q; = (degree of jth vertex in X)-1,
Q= Q31,, ¥ =1,q= identity matrix.

Proof can be found in Stark and Terras, Advances in
Math., Vol. 154 (2000)



NOTES FOR REGULAR GRAPHS mostly

@ Another proof uses Selberg trace formula on tree to
prove Thara’s theorem. For case of trivial
representation, see A.T., Fourier Analysis on Finite
Groups & Applics; for general case, see and Venkov
& Nikitin, St. Petersberg Math. J., 5 (1994)

° 1 " r+lar
@&{g—] 0)=(=H"2"(r-Dx(X), where k(X)=the number

of spanning trees of X, the complexity

wbIhara zeta has functional equations relating value at
u and 1/(qu), q=degree -1

4 Riemann Hypothesis, for case of trivial
representation (poles), means graph is Ramanujan
i.e., non-trivial spectrum of adjacency matrix is
contained in the spectrum for the universal covering
tree which is the interval (-2Vq, 2Vq) [see Lubotzky,
Phillips & Sarnak, Combinatorica, 8 (1988)]

#%RH is true for most graphs but it can be false

#-Hashimoto [Adv. Stud. Pure Math., 15 (1989)]
proves Ihara { for certain graphs is essentially the {
function of a Shimura curve over a finite field



The Prime Number Theorem

63 HIHHIHHIHHHIHIHEIHIHIHHIHHHHHHIE
Let Tx(m) denote the number of prime path
equivalence classes [C] in X where the length of C
is m. Assume X is finite connected (q+1)-regular.
Since 1/q is the absolute value of the closest
pole(s) of {(u,X) to 0, then

ix(m) ~ q"/m as m —oo,

63630303 IHIHIH I I I I HIHLIHIHILILI;E I
The proof comes from the method of generating
functions (See Wilf, generatingfunctionology) and
the fact that (as in Stark & Terras, Advances in
Math, 121 & 154):

u dilog C(u,X)= an (mu™
u

m=]

Here nx(m) is the number of closed paths C in X
of length m without backtracking or tails.

630300 I I LI IH I HE LI LI
Note: When X is not regular, we could define q to
be the reciprocal of the absolute value of the
closest pole(s) of zeta to 0.



EXAMPLE 1. Y=cube, X=tetrahedron
IX|=4, [Y|=8, r=3, G={e,g}

representations of G are 1 and p: p(e)=1, p(g) =-1
I'= L, Q/ =214,

A(e)yy= #{length 1 paths u’ to v/ in Y}
A(g)uv= #{length 1 paths v’ to v/ in Y}

01 0 0) 00 1 1)
doe 01| ggolo 000
“Zlo 1 0 0 8= 0 0 1

0100 1010

A’; = A = adjacency matrix of X




Zeta and L-Functions of Cube & Tetrabedron

N
Pt

# {(u,Y)" = L(u,p,Y/X)" {(u,X)"
# L(u, p,Y/X)" = (1-u?) (1+u) (1+2u) (1-u+2u?)’
# {(u,X)" = (1-ud)*(1-u)(1-2u) (1+u+2u’)’

# roots of {(u,X)! are 1,1,1, %,r,r,r
where r=(-1£V-7)/4 and |r|=1~2

# The pole of {(u,X) closest to 0 governs the prime number
theorem discussed a few pages back. It is 1/q=1/2. The
coefficients of the following generating function are the numbers
of closed paths without backtracking or tails of the indicated
length

u%log{(u.z\’) =241 4+ 24u”" + 964" +168u" +1684° +528:4° +12004"° + 18484"" + O(u'?)

So there are 8 primes of length 3 in X, for example.




Ys 1@

x=1,2,3

a(l)'a(lﬂ)

|

a2

Y3

(x)

G=S3;, H={(1),(23)} fixes Ys. a'"=(a,(1)), a¥=(a,(13)), a"¥=(a,(132),
a¥=(a,(23)),a%=(a,(123)),a=(a,(23))
Here we use the standard cycle notation for elements of the symmetric group.



3 classes of primes

/ 4
x|

in base graph X W )
from preceding A
page

4 Class C1  path in X (list vertices)

14312412431
f=1, g=3 3 liftsto Y3
1I4I3III1IIIZIII4"1"2"4III3111
1"4"3"1"2"4"11["2"’4"3"1II
1III4III31112I4I11214I3I"1"I
Frobenius trivial = density 1/6

4 Class C2 path in X (list vertices) 1241
2 lifts to Y3

12'4'1’ f=1
1"2"4"11"12"’4"1" f=2
Frobenius order 2 = density 1/2

4 Class C3 path in X (list vertices)
12431

f=3 1lifttoYs
1I2I4I3III1III2III4II3"1II2II4III3111
Frobenius order 3 = density 1/3



C(u,X)'=(1-u?)1-u)(1+u?)(1+u+2ud)(1-u?20°)

Cu,Y3)'=C(u,X)" (1-u?)’(1-u-u’+2u)
x(l-u+2uz—u3+2u4)(1+u+u3+2u4)
x(1+u+2u’+u’+2u?)

M {(0,Ye)'=C(u,Y5)" (1-ud)*(1+u)(1+ud)(1-u+2u?)
x (1-u*+2u’) (1-u-u’+2u*) (1-u+2v?-u*+2u)
X (1+u+u’+2u?)(1+u+2u’+u’+2u?)

It follows that, as in the number theory analog,

Gu,X)* §(u,Ye) = §(u,Y2) §(u,Y3)’
Here Y, is an intermediate quadratic extension between
Y and X. See Stark and Terras, Adv. in Math., 154
(2000), Figure 13, for a discussion.

The poles of {(u,X) are u=1,1,-1, +i,(-12V7i)/4,w,w,1/q
Where w,1/q are roots of the cubic. The closest pole to 0 is
1/q. And q is approximately 1.5214. So the prime number
theorem gives a considerably smaller main term, q"/m, for
this graph X than for K, where q=2.



Orient the edges of the graph. Multiedge matrix W
has ab entry w(a,b)=w,, in C, if the edges a and b look like

Otherwise set wyp,=0 Define for closed path C=a,a,...a,,

Ng(C)=w(as,a1)w(ag,az)...w(as.1,a;)

~
' Y/X
LE(W’p’Y/X)=H l—p T~ NE(C)
(€] D

where the product is over primes [C] of X and [D] is any
prime of Y over [C]

Properties

» Lg (W,1,Y/X)=((W,X), the edge zeta function

> LE(W,p)"=det(l-Wp), where W, is a 2|E|x2|E| block
matrix with ij block given by (w;; p(Frob(e;))

» Induction property

> Factorization of edge zeta as a product of edge L-
functions

> specialize all wij=u and get the Artin-Thara vertex L
function



E0 00 .

X=Dumbbell Graph
and Fission of an

Edge
[ b e
(Wm?l wab O
0 -1 w,
LX) = 0 0 w-l
E( ’X) - O wab O
w 0 0
0 0 0

Here b and e are the vertical edges.

Specialize all variables with b and e to be 0 and get zeta function of

subgraph with vertical edge removed - F ision
This gives the graph with just 2 disconnected loops.



X=Dumbbell

Gal(Y/X) = {06,,6,,63,64} = Z/AZ.

Identification sends  ©; to j - 1(mod 4)
The representations are 1-dimensional: wt.(b)=1
Galois group elements associated to edges a,b,c are

Frob(a) = ©,, Frob(b)= o, Frob(c)= o©,.

a(b-1)




Edge L-Functions for Example 3.
(w,-lw, 0 0 0 0 )
-lowe 00w

0

WX = LW LY/ X0 =det 0 0O w-1 0 w, O
w, 0
0

(iw, =1 iw, 0 0 0 0
0 -1 ow 0 0 W,
WY X —det 0 0 m-1 0 iw, 0
LWm,YIXy" = 0 - 0 -—ay-1 0 0
w, 0 0 Wy -1 0

\ 0 0 0 0 -, —iv-l

(~w,—1 -w, O 0 0 0 )
0 -1 w 0 0w
¥ /X det 0 0O -w-1 0 -w 0
W mYIXy=dl o L 0 -l 0 0
W, 0 0 w, -l 0

\ 0 0 0 0 -w _”ff_ll

(<im,—1 —iwy, 0 0 0 0 )

Wy
v rireg] © 0 ML 0 w0
LWmYIXy =c o 4 0 iw-l 0 0
W, 0 0 w, -l 0

0 0 0 0 iw, —1‘

\

Note that the product of these 6x6 determinants is the 24x24
determinant whose reciprocal is the multiedge zeta function of Y,

the cube.




RathIERINGHONS

Here we discuss a new kind of L-function with smaller sized matrix
determinants.

Fundamental Group of X can be identified with group

generated by edges left out of a spanning tree

-1 -1
€/5::€,,€] 5.ens€,

2r X2r multipath matrix Z has ij entry
z; in Cif e;#¢ and z;=0, otherwise.

Imitate the definition of the edge Artin L-functions.

Write a prime path as a reduced word in a conjugacy class
C=a,---a,, where a,e{e,... .6}
and define the path norm

5=

N.(C)=z(a,,q, )H z(a;,a,,)

where z(e;,€))=z;;.

Define the path zeta L-function

-1
Y/X
L.(Z,xm,Y/X)=]|det|l1-w| — |N,(C
p( H ( ( 5 ) p( )]
Product is over prime cycles [C] in X
[D] is any prime of Y over [C]




The path L-functions have analogous properties to the
edge L-functions.

# They are reciprocals of polynomials.

# They provide factorizations of the path zeta functions.
# The most important property is that of

Specialization to Path L-functions.

» edges left out of a spanning tree T of X: ¢,...e,
generate fundamental group of X

> inverse edges are €. =€ s...&, =¢; '
» edges of the spanning tree T are  %s+-> {x 4
» with inverse edges x|s:--faxn-

If ¢#€' write the part of the path between ¢; and ¢;

as the (unique) product %, "%,

C is 1st a product of ¢; (generators of the fundamental
group), then a product of actual edges €; and t,.
Specialize the multipath matrix Z to Z(W) with
entries

n=1

z; = wient W, e[ [ wiy ot )

vzl

Then

L(Z(W),X) =L, W ,X)




Recall the edge zeta
was a 6x6 determinant.
The specialized path
zeta is only 4x4.
Maple computes it
much faster than the
6x6.

(waa—l
w_w
CeW, Xy =det|

\ erwea

Fusion of an edge is now

easy to do in the path zeta.

To obtain edge zeta of graph

obtained from dumbbell graph,

by fusing edges b and e,

Replace wy,wpy with wy,
Replace w,w,, with w,,

Wab wbc

w_ —1

cc

Wap W

0




Application of Galois Theory of Graph
Coverings. You can’t hear the shape of a graph.

Find 2 regular graphs (without loops and multiple
edges) which are isospectral but not isomorphic.

See A.T. & Stark in Adv. in Math., Vol. 154 (2000) for
the details. The method goes back to algebraic
number theorists who found number fields K; which
are non isomorphic but have the same Dedekind zeta.

See Perlis, J. Number Theory, 9 (1977).






Spectra of arithmetic infinite graphs

#8543 (Hirofumi Nagoshi)
RN K F BRI FERr

1. IXCBDIC

AT, BEELOKRNWEBRBRE»CEONLHLERS 5 7 2 EE
ThH, FNIIHT LWL ANEZREL, $-20IHE LT, HHT5
Ihara-Selberg ¥ — ¥ R BB ZOBEEDO S I T AR RS,

SL(2,R) &, ¥l H = {z € C|lmz > 0} II—RAHERTIERT
o FDEE, PIZIESL2,Z) % L ORI SIEIC L A6 SL(2,Z)\H 2%
2BHE, b)) - HiHHEE, T HEL BB LT,
Wb B BARR Selberg ¥ — ¥ BIE L & OEERA Selberg 12 & DS 3 /-
[S1][82][Hel.

D%, 0 Selberg DEFHIL, HA L HFEND—FILPLHLAE XM S
ni=ps, F—FTErHRESATV LRI L LRIID L, RKEORERICHM
ETH50L LT, EMERY T 7 DED Selberg DEERA* Ahumada[Al]
KXo THIGNRT WA,

E1 i Wand

2. &XE

KIS, AT HROBRELBRD, UTTIE, ¢ B3HFEEpOREp &
L. Folt] 2R F, EOZHAR, Fo(t) & TDBEELT Do B F,(t) 1213,
= f(t)/g(t) € Fy(t) (f(2), 9(t) € Foft]) i2H L |al := q“"eg-"“"’g” EED
BIEIED I VA W ABe TDIVLIZH L TF,(t) ML L 7214&,
DENER., 1/t0u—F Y REEERTHRLEF((1/1) = {32, at™ne
Z,0; €F} DI ETHBN, FNEUT, ko EHL LT B Tk 130
AEBQ & M CRAib L THIRAER (KB OFBTH L,
ko DT a =T ait™ (a, #0) I L, £D/ VAl |alw =g " &L 5B,
F 70 T 1/t DT — T —BBEETHEELIRF,[1/1] = {12, at~|n €
Nyo,a; € F } 2T I LIZT 5,
Z D5,
G := PGL(2, ko) = GL(2, ko) /K2,
K := PGL(2,1%) = GL(2,7%) /7%

EE KIZGOBKIy 7 MEGHTHD, £DLE, G\K X (q+1)-IE
ARX =X, LAuEhd Il edMONTWVDS, £RIZEHL T, FLiliR%,



F 4 explicit % FR iR 7: 00 (see e.g. [Li))o # G/K DEELFERD—D

& LT,
t" =z
{(6 1)<
g+ 1BEDTHL gs; K (i =1,--+ ,q+ 1) (72721,

(2.1) {m,uﬁﬁd={(é?) aem}u{(é?)}

EEB) FoeoTnbIEEEDL, 29 LTESDDH, K (tree)
B EHERTID, (q+D-EHAKR X PR LAMS, 413, GOBAN2E
REMoTX ZHEB LA &9 intrinsic BIER T, — &Ik DL 2IET
WEAFALRBRAED LOBY TR L T, 20X 9 %4 combinatorial
MR (building LTI D) PEKTED, XDED L) BED
R building 22V Ti, BRI, [Se] R [St] # B L R\,

—fRZTF 7Y IIHLT, V(Y) TZOTB AR, E(Y) TZ0lekitk
TETB, VY)OI L%, BIZY Eld 2 e b H b, KX T, BRGE
Med (wve XDPBELTWAS du,v)=1) b5,

LUF., AR5l ZEFRMSEH LIEIN L ROEGRSEER I L EET 5,

neZ,x € koo/t"rx}

I =T(A) = {7 € PGL(2,F,[t]) | Y P HHLEIL A H, 5 = (é (1)) mod A} .
AEF,[lo SOTIHLT, 8777 T\X . T(A) BFEEDTEH 402
LASEEL, ABRICE#RSIND, ZOT\X &, BRSF 7T, H2HRS T
TR (end FHEFH LT 5B) PERBL o207 E LTV 5,
112, T =T(1) = PGL(2,F ) =& B 77 71, HE/Zb o, :=(49) €
V(X), n€ Nyg ZFEATTELRHBTHZOND, 16, §EL 1L, [Se,
I1.1.6] [M2] % Eiliflio T 5%, AR (pf&35) Dend#irZit -1t
% (€ 0X) D&% IERMH L cusps LD, TNO % ki, kg, 6, € OX =
Pl(ky) LT,

$ 72 T(1) i, G £ Haar MIEIIH L TRET(1)\G OBRDHMTH 5 &
) LR ETH B (see [Se, 11.1.6])o LT T(A) bEFIThHbB, M7
57\X2id. KOS 1 EERELTH L, ve VI\X) KL

m(v) = |T| ™"

(ZZC. T, c T v OEESTH) B AHIMBENAS (sce [Se, 11.1.5]))o F 7=,
A LAk mie),e € E(T\X) % m(e) == |[,|"' (22T, T.cTiden
SEMHE) TERT 5,



AETIE, VX)) LOBBIECRiZ DEEZ D, BEEHNSLIFITRS
WHET %

(TH@) := Z f(u) Zf(ws;), fV(X)-=C
wd(vau)=I1 i=1

ELTEHET 5o JHUIT\X LOMWEICEER SN B D5, 40 D\ X OBAICIE,

m(e) I
(TH) = > rzuof() f:V(I\X) = C
e=(van€E(IMX)
(2T, e=(u) 3 EAvE v &ABe THIENTWBE I LERT) L&
TIEHNTES,
IF. %5 MREMIE, LT\X) =

{fﬂdxr~0hmm=fwnmvengewxy/

X

|f ()] dm(v) < oo}
Thb, O LHC\X) 2id, HF
(f1. fa) = fi(g)- F2(g)dm(g)

ry
x ANB,

Lubotzky-Phillips-Sarnak[LPS] = & > T, BEEHEORAMOKE D
ZfkH 5, Ramanujan graph EMEHENBIEHIHR T 7 3R I LTV 5,
Morgenstern [M1] (X, ThEHRT 7 7 LIRS 2vb DIZ—#{EL T Ra-
manujan diagram EWEHEN B b DEEFE L /2o £ L T, Drinfeld DR %

) 2 EIZE Y, HIRERL
Theorem 2.1. [M2, Theorem 2.1] 77 7 T(A)\X (&, Rumanujan diagram
T &) % °

3. EISENSTEIN #& %

ZDiTIE, Eisenstein M EMIIN LD AT L, FEIIIh%E{ES
CEiZE ), AT\X) TOT OMFEARY b VDG EREND Z LHHS
NTVD, FLDIZ, BEv(g)(9eGseC) %

w,(g) = | det g3, ((0,1)g) ™

t';‘ﬁ%éa‘éo ZIT, (0.D)glx, 1 x 2-57F) (0.1) & 2 x 2-4751 g DFE %i@
< h((z,y) = sup{|e]x. [y} TH B FEIL, vu(g) = |9 Dy R (3,
.,go‘('b‘%o W p, 12, H K REDPOENAE (N:={(}T)eG}) 'Cz‘i)

5o E12,

(Tw)g) = (¢° + ¢' %) ¥ul9)



P T I ENBBICHEIORSE, FDOL E, B AT & 1237 LT, Eisenstein
BEE. (9,8),9 € G,s € CHE#REIND, MHEDN/2OIZ, BAT 0 2T
% Eisenstein O A * EHT HH5. Fhid

Ex(g,5)= Y vi(19), Re(s)>1

Y€l 0o\

EVHIBDTHb, ST, I, CTidoo e X DEERIRLET, B
E,.(g,s) 13, Cefii@Es I,

EK&(7913) = E'Ci(g1 3)1 veTl,
(TE.)(g,5) = (¢ + ¢'*)E,(g,5)

BT NS B,

Eg,s) 1. BH ATk (=1, ,p) 2T, hee l2BIF27—Y LR
FASHR, ZOEEEDS ¢ii(s) L RTEEL LB EE 5, Li [Li]id
D(A) 233 L T gy(s) %+ F,t] mod A DIZHUNHEY 5 Dirichlet L BIR%E fli-
TERL. RERL7

Proposition 3.1. [Li, p.241, p.242, p.249)| T =T(A) £ ¥ L &,

o () 13 ORBMY. EHge X FEBLALE, E(g,5) 1
g DEHEBEKTHS,

® ¢ij(s) & Ex,(g,5) (g dIA%E) 13, Re(s) 2 3 12BVT s = 14nZ (n€
Z) TO1MOBERVT, Ef.

o 1 X p-ATHN @(s) := (pi;(s)) IHFATHIT, BBEEX (s)®(1—5s) =1
Xili7cd. (s=1+itTE, o(s)idx=%1—,)

1750 ®(s) D L ZFEATHIR & Vv, ZDITFI o(s) 1= det &(s) % kAL
TR -5 17513 o(s) 12, 4. BFAR R Thara-Selberg £ — 7 0
TRIRFORCHEL k5, 3 [N2] I2BW T [Li] LIZ#EI R FH T, pi(s)
DEREHBT, RERLI,

Proposition 3.2. A% := (F,[t]/AF,[t]) /F* & L. A % A* Otk
T, MM L(s,x) % x € AX \2fBET % Dirichlet LI E T2, FDL &,
o(s) DB, B

(¢ — ¢ [ L(2s,x)"

x€AX

(ZZTC\ hi=p/r,r = ¢p(A)/(qg —1). $(A) & Euler O totient function) O
FELIHIL, EHERAAT, §Ehb,



CAPYAL ST

(¢* — ga1)(g* — qaz) -~ (¢* — qan)
3.1 =c - ‘
(3.1) Pe) = T ) @ = o) (P = ab)
(2T, cai(i=1,-.m)bj(j=1-,n) TEHT, HLIBHLETS)
EBEWTBL,

WA

Selberg MAFN L 12, TIZBT A A2 P L O (EBERH A H) |
HHE T OFEEE GOTHER) [CELIMEHANNTH S, Hﬁﬁuyw%
point pair invariant & U K(g,¢') = 3_.cr k(9.7¢') £E5 &, THUL K (vg,9) =
K(9.9') = K(9,79'):7v € PChomb 1“\X LOBES (2F 0, f(vg) = f9)
foryel,ge V(X)xiiZd) 23 bR 1%

(Lf)(g) = /r Kl Yim()

THHN, kDPBEY L L2l TEEIDOLIZOWT 20 (2N, £
NHREHETAILICE > THARKIZEON S,
DF, T=T(A) ORI %I P2 LT

N(P) = sup{| X%, | Nl2ATHI P DEAGE )

EBE, degP:=log,N(P) &¥ %, T/, RMiAy7%IT P i3 %IT (T
DD TED exponent> 1 £ AXRF T VL D) Py 2HWT, P=Pf (k> 1)
LFEND, TOENMEEEEE Pr TEL. D2 T O LAT\X)-BAE
ek (ARMA) L35, FDLE, T =T(A) 3T 5 explicit BRI
D& HZ% 5 |N1o

Theorem 4.1. B#fiA; € DI LTA; =¢2+¢'7%,s; = 1/24ir; LB,
¥Fe(n) € C, n € ZH, c(n) =c(-n) & X, 5., " %lc(n)] = O(g™™),m —
o0 Bilfi7zLTwadETH, $HL. T=T1)DE &

h (%) +h (% + lo’;q) — vol(P\X)k(0)

deg P
(o o)+ 3 3 B Rty
1 7= (e it 4 2
g -2 3g—4
+2,,,Z_1 +1)e (2m)+( — 1)2,/»(0)+ 3a 1)0(0)



FEIYL, T=T(A)(c=degA>1) DL &
ID|

Z h(r;) = vol(T\X)&(0 Z Z de,[i']:u( (I deg Py)

j=1 {Poyepr 1=1 4

s (I, o (%)) (—(‘ (0) + Z Qm))

m=

1 e ‘ © (3 +ir) 1
+ . _I"::w h(? ) md? Hla + 7— 1 (,(0)
WAL T B,

5. IHARA-SELBERG ¥ — ¥ B
ZOETIX, 777 T(AN\X 1234 5 Thara-Selberg ¥ — 7 [EIZ oW T
HETH, IF. TOEHRTH LA, HHMELEEPr 2 TROEH 12
T5,
o= [ @-w*®)= JI 0-NE)™)  u=g™

{Po}ePr {Po}ePr
4,

(5.1) N, = Z deg P, m>1

{P}ePr
deg Polm

EBLE, (r(u) i

= Ny,
(5.2) Cr(u) = exp (Z jn—lu"')

m=1
LEEhB,
Theorem 4.1 (2BW T, ¢(n) %
—(log q) g~ e~ n#0
cn) = { n =0,
(seCiIRe(s) 22, LEE) LA &IZL Y, Ihara-Selberg £ — % %k
IS L, KDEI LT OARY P ML L BTHRERLEF SN S [N1o
Theorem 5.1. T =T'(A)(degA>1) & L,
det (T, s) := detp(Tt, s) - dete(Tr, s),
(D]
detp(Tr.s) = [J(1 = g™ +¢'7),

n=I



dete(Tr.s) = [ (1—q 2y T (1 - g7}

;1«1 [b;]>1
(ZZT, b3 @B bm) LFE L,
(5.3) Cr(w)™! = (1= ¢ #)¥(1 = ¢ **) " det (Tr, 5)

ALY B 2Ty x:=volM\X)G, pi=1 (u—-Trd (3)) TH5B, L
T, Cr(_q)(u) i u Oﬁﬁﬂfﬁﬁﬁﬁ)éo

& Bfkpyizix, #lz (g,
1 — ¢*u?

) =
Cry(u) g

1 —u?)"(1 - ¢*u®)
( i
(1 — (1‘(1.2)‘l+l

Cr(t)(“)_l =

THhbo HEITHIXDFHHZET %,

FHIRZ 7 7 O Thara-Selberg ¥ — & B DV Tid, W 21T, [StTe| [Te] [Ah]
rRBERV, FNHIIDWTUE, Theorem 5.1 1238135 dete (T, s) A%
BxLTwa,

HHANRY PV OFEEGDOITHIN 2o T 5 dete (T, 8) &, o(s) DB (F
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Character tables of some association schemes, and
Ramanujan graphs

Eiichi Bannai, Osamu Shimabukuro and Hajime Tanaka

Graduate School of Mathematics
Kyushu University

In Kumamoto the first author (Eiichi Bannai) gave the talk with the above title, This talk was
based on the following two papers written jointly with Osamu Shimabukuro and lajime Tanaka,
both at Kyushu University.

1. Finite Euclidean graphs and Ramamnjan graphs, preprint, submitted to the Proceedings of the
Fourth Shanghai Conference on Combinatorics, a special issue of Discrete Mathematics.

2. Finite analogues of non-Euclidean spaces and Ramanujan graphs, preprint, to appear in Seidel
memorial issue of European Journal of Combinatorics.

These papers are availavle upon request to the anthors. In this proceedings, we give an abbre-
viated version of the first paper, and an abstract and the introduction of the second paper.

Finite Euclidean graphs and Ramanujan graphs

Eiichi Bannai, Osammu Shimabukuro and Hajime Tanaka

Abstract

We consider finite analogues of Enclidean graphs in a more general seiting than the one
considered in Medrano-Myers-Stark-Terras [13] and we obtain many new examples of Ra-
manujan graphs. In order to prove these results, we use the previous work of W.M. Kwok
[9] calculating the character tables of certain association schemes of affine type. A key obser-
vation is that we can obtain better estimates for the ordinary Kloosterman sum K(a.b;q).
Iu particular. we always achieve [K(a.b;q)| < 2,/7, and |K(a.b;9)i € 2y/g =3 in many (but
not all) of the cases, instead of the well known |K(a,b;¢)| < 2,/7. Also, we use the ideas of
controlling association schemes, and the Ennola type dualitics, in our previous work on the
character tables of commutative association schemes. The method in this paper will be used
to construct many more new examples of familics of Ramanujan graphs in the subsequent

paper.

Introduction

The purpose of this paper is to continuc the study on finite analogues of Euclidean graphs which
was started in Medrano ef al. [13].



In [13]. they considered the following finite Euclidean graphs. Let V' = V,,(q) = Fy be the
n-dimensional vector space over the finite field F, where g = p” with p a prime number. (In [13], p
was assiined to be an odd prime.) For «, y € F,, the Enclidean distance d(.r, y) € F,; is defined by

d(I$ y) = (171 —Hh )2 + (a2 — .']'2)"2 et (T - .'/n)?‘
The Euclidean graph E,(n, @) was defined as the graph with the vertex set V and the cdge set
E={(r.y)eVxV|x#y,dzy)=a}.

Then they considered the spectra of the graph E,(n,a) and discussed when these graphs are Ra-
mamijan graphs. As is well known, a regular (undirected) graph of valency k is called 2 Ramanujan
graph if any eigenvalue @ of the graph with |6 # & satisfies

10| < 2vVk - 1. (1)

However, we remark that it is more natural to define finite analogues of Enclidean graphs
for each non-degenerate quadratic form on V, instead of considering ounly the above distance
dr.y) = oy~ ) + (22 = y2)® + - + (&n = ya)?. That is, let Q be a non-degenerate quadratic
form on V. Then the graph Ey(n, @, a) is defined as the graph with the vertex set V' and the edge
sel

E={(z,y)eVxV]|z#y Qz-y)=a). (2)

The advantage of using this new definition is twofold. First, note that if n = 2m is even, there are
two inequivalent non-degenerate quadratic forms Q@ = Q% on V = Fy (see §1). I ¢ =3 (mod 4),
the quadratic form d(z.0) = x3 + .3 +--- +2 is cquivalent to Q3,,, depending on whether m is odd
or even, while it is always equivalent (0 QF,, if¢ = 1 (mod 4). Therefore we obtain more cxanples
of interesting graphs in a unified manner. Second. this allows us to counsider finite analogues of
Euclidean graphs when g is even. (In this case, d(-.0) is degenerate. It is remarked in Medrano
et al. [13] and Terras [15] that finite analogues of Euclidean graphs for F,. with ¢ even. had
not been studied.) Moreover, we will be able to see that the previous work of W.M. Kwok [9] is
readily applicable when this new viewpoint is introduced. In fact, using the character tables of
certain association schemes of affine type obtained in Kwok [9], we can obtain many new examples
of Ramanujan graphs among the graphs £,(n, @, a). (The reader is referred to Bannai-lto [2],
Bannai [1] for the basic concept of commntative association schemes and their character tables.)
We also remark that this phenomenon is closely connected with the previons work of Ennola type
dualities in some association schemes given in Bannai-IKwok-Song [3], as we will discuss more in
the subsequent papers.

The content of this paper is as follows. In §1. we review basic materials on the character tables of
association schemes which give the framework for the study of finite Euclidean graphs Ey(n, Q, a).
In particular. we will review the work of Kwok [|9]. In §2. we counsider certain Kloosterman sums
(which are essentially Gaussian periods) and the well known inequality [K(a.b:q)| < 2,/g due to
A. Weil [16]. Then we will discnss when the equality |K(a.b:q)] = 2,/3 is attained. (We will
show that this is never attained for the Kloosterman sums K (a.b:q) we are considering.) Then,
in §3, this result will be applied to discuss which of the finite Euclidean graphs Ey(n, Q. a) are
Ramanujan graphs. Our main results in this paper are Theorems 3.1-3.4 in 3. In addition, in
&1, we will give some results of caleulations by computer for some small parameters e and q,
implementing the earlier work of Medrano et al. [13].

In order to keep this paper concise, we confined our discussions to the finite Enclidean graphs
E,(n,Q,a). However, it is possible to obtain similar kinds of results for other many association
schemes considered in the papers Bannai-Shen-Song [4]. Bannai-Shen-Song-Wei [5], ete. (i.e., finite
analognes of non-euclidean graphs in the sense of [15, Chapter 19]). That study will be treated in
the subsequent. papers.

Acknowledgement. The authors would like 1o thank Dr. Koji Chinen for giving us a help in finding

the idea of the proof of Lemma 2.2, as well as inforuing us of the references Chinen-Hiramatsu
{7]. Lachaud-Wolfmann [10]. Wolfmann [17]. We are also indebted to Professor Masanobn Kaneko



and Ms. Akane Katamoto. Prof. Kaneko kindly retested some of the computer caluculations given
in §4, and Ms. Katamoto transforined the formula for Gaussian periods ((3) below) into a more
explicit formula using only cosine functions, which enabled us to imnprove the accuracy of these
calculations.

1 Orthogonal groups, association schemes of certain affine
types and their character tables

Let X = (X, {Ri}o<i<da) be a commutative association scheme of class d (see Bannai [1] or Banuai-

Ito [2] for instance). Let A; be the adjacency matrix with respect to the relation R;. Then

Ap, A1, ..., Aq generate a semisimple algebra A over the complex number field, called the Bose-

Mesner algebra of X. Let Ey = F{’T'I‘ E,,...,Es be a unique sct of primitive idempotents of A,
where J is the matrix whose entries are all 1, and write

d
A=) p)E;),
i=0

for 0 < i < d (in particular, k; = p;(0) is the valency of the regular graph (X, R;)). The (d +
1) x (d + 1) matrix P whose (j, i)-entry is p;(7), is called the character table of the commutative
association scheme X.

Many examples of association schemes are obtained as follows. Let G be a finite group acting
transitively on a finite set X, and let Op = {(z.z)|z € X}, O)....,O4 be the orbits of G acting
on the set X x X. Define the relation R; on X by

(‘T!y) € Ri' had (Iv y) € Oiv

for 0 £ ¢ < d, then it is casily seen that the pair (X, {R;}o<i<a) is an association scheme.

Now, let @ be a non-degencrate quadratic form on the vector space V = V,,(q) = Fj. Then the
group of all lincar transformations on V that fix Q, is called the orthogonal group associated with
the quadratic form @, and is denoted by O(V, Q). More precisely,

O(V,Q) = {0 € GL(V)| Q(o(z)) = Q(x) for all x € V}.

The non-degenerate quadratic forms over F, are classified as follows:

(i) Suppose n = 2m is even. If ¢ is odd, then there are two inequivalent non-degencrate
quadratic forms Q* and Q~:

QH(x) = 2w122 + -+ + 2T — 1 Tomm,
Q—‘(.’L‘) =252+ -+ 209, 3T —2 + x%m—-l - OI%,",

where a is a non-square clement in Fy. If g is even, then there are also two inequivalent non-
degenerate quadratic forms Q* and Q™

Q+(x) =rrz+ -+ Im-1T2m:

- 2 2
Q (T) =1rI|rs +- 4+ Lo ~-3T2m-2 + Loy =1 + Lam-1L2m + 3x2mv

where 3 is an element in Fy such that the polynomial ¢ + t + 3 is irreducible over F,. We write

GO, (q) = O(V,Q™) and GO;,,(q) = OV, Q7).

(ii) Suppose n = 2m + | is odd. If g is odd, then there are two inequivalent non-degenerate
quadratic forms Q and @'

. ., .2
Q(I) =2x1L2 + -+ - + 2Topm—1T2m + Tom+1

(2’(1‘) = 2.’1f|1‘2 LR o 21‘211]—11211- + 01"gm+l'



where a is a non-square clement in F,;, however the groups O(V. Q) and O(V, Q') are isomorphic.
If g is even, then there exists exactly one inequivalent non-degenerate quadratic form Q:

(2(.{') =rrp+ e+ Iam-1d2m + Igm+l'

We write GO2,,.41(q) = O(V.Q).

Let G = O(V.Q) be the orthogonal group associated with a non-degenerate quadratic form
@ on V. Then the gronp G = V - GG, the semi-direct product of V (translations) and G, acts on
the set V transitively. Since V' is abelian, we get the commmtative association scheme from this
permutation group. Kwok [9} called this association scheme as one of the association schemes of
affine type, and studied very carcfully their properties together with their character tables. Here.
we recall some of the main results obtained by Kwok [9].

In what follows, we denote this association scheme by X(G.V). The character table P =
P(G,V) of X(G. V) is expressed as follows. (Since some of the tables in Kwok [9] contain misprints
which are sometimes very difficult to detect, we write down them explicitly here. For the notation,
we will basically follow Kwok [9]. Also, sce the explanation below.)

Kwok [9] separates the discussion into the following four cases. (Discussions of Case 3 and Case
4 arc omitted here.)

Let p be a primitive element of F,.

Case 1. X(GO3,,(q), Vam(g)): The relations are given by
Ry = {(z,x)|x € V},
Ri={(z,)) eVxV|Q -y =p} for1<i<qg-1,
Ry={(z,) €V xV]|r#y Q (x-y =0}

Thus (V, R;) = E,(2m,Q™,pf) for | i< g— 1, and (V,R;) = E;(2m,Q~,0). Notice that R is
cenpty if m = 1. We have

1 q'Zm-I + (Im—l . _(l2m—l + qm—l q2m—l - (q — l)qm—l -1

] (lm—l -1
P(GOZ.m((I)! VZm(q)) = ' q"'_l . l[!(‘Z,q,q - l) :

1 qm—l -1

1 qm—l.”qm—l _(q_ l)qm—l -1

for m > 1 (the last column and the last row are empty if e = 1). The explicit definition of the
submatrix ¥(2.q,q — 1) is given later.

Case 2. X(GOZ.,.(9). Vam(q)): The relations are given by

Ro = {(x,x)|e € V}.
Ri={(r.))eVxV|Q*(c-y)=p'). for1<i<q-L.
Ry={(z.n) eV xV]r#y Q" (x-y) =0}

Thus (V, Ri) = E;(2m.Q*.p') for 1 <i < q— L and (V. Ry) = E,(2m.Q*,0). We have

1 q'.’m-l - qm-l ,”qu—l - qm—l q'.’m—l + (q _ l)qm—l -1

1 _qm—l -1
P(Gog-m(q)v V.’m(’l)) = _.q"'—l . \I!(‘Z,q,q - ])
_qm—l |
—{["‘-l"'—()"l_l (f]- l)qm—l -1

for n > 1.



In the above tables, the matrix ¥ = ¥(n, q,e) with ef = ¢ — 1 is defined as the following ¢ x ¢
matrix:

Mo M -+« Ne-n

h o ... o

b= . . .
He—d Mo «-- Te-2

where 1 = yi(n.q.¢) (0 £i < e — 1) are the Gaussian periods for the ficld F,. defined by

m= > e(Trgp(ph)) (3)
=i (mod )
0<i' <y =2
with e(x) = exp(27ix/p). p, being a primitive element of Fy., and Tryep, : Fyo — F), being the
trace map from Fy» onto Fp,. Note that the matrix

fr ... 7
L m o oor Bemn
1y 1 ...
L ey 0 oov Ne-2

is the character table of the eyclotomic association scheme of class ¢ obtained by the action of
Fyn - Z5 on Fpu (= V,(9)), where Zp C Fy. is the cyclic subgroup of order f.

Remark. The same submatrix (2, ¢, ¢q—1) of size (q—1) x(g—1) appears in both P(GO5,, (¢). Vam(q))
and P(GOZ (¢), Vam(g)). This is not an accident, but is an example of the Ennola type dualities

2in
which was mentioned in Bannai-lKwok-Song [3]. and this observation is crucial for showing that

many graphs in Case 2 are Ramanmijan graphs.

2 Kloosterman sums

As it is mentioned in Medrano cf al. [13. p.232]. the values of i, = 9i(2.¢.q- D (0<i<¢-2)
in P(GO;,,(q). Vam(q)) and P(GOF, (7). Vai(q)) are expressed by using usnal Kloosterman sums
defined by

K(a.big)= > e(Tryplar +br7"). (4)

rEF;
for a.b € F,. Namely. we have the following:

Lemma 2.1. For 0 <i<q-2. we have

wo=m(2.9,.9-1) = -K(p'. 1:q). (5)
where p = pg“ is @ primitive clement of F,.

(Proof is omitted here))

It is well known that the Kloosterman sum is bounded above by 2,/ by Weil {16] (see also
Selmidt {14], Li [11]):
K (a.b:q)| < 24, (6)

for all a,b € Fy,. The following lemma is a slight strengthening of this result.

Lemma 2.2. Suppose a.b arc nonzerv elements of Fq. Then we have

|K(a.b:q)| < 24/3.



Proof. Our proof of Lemma 2.2 is inspired by [7. Theorem 7.1]. By virtue of (6), it is enough to
show the following:

|K(a.b:q)] # 2\/q. (N

First. notice that &'(a.b:q) is an algebraic integer in the cyclotomic field

K =Q(().

where ¢, = exp(27i/p). We denote the ring of integers in i by Og. Let 7, =1 -, then 7, is a
primie in O and 7, divides p. Since

e(Tr, () = C;T"*"’(“) =(1- '.'r,,)'“'""’(") =1 (mod =),

for all « € F,,, we have
Kab;q) = K(ab:qg)=q~-1=-1 (mod m,).
from which it follows that
(K(a.b:q)* = l\'(a.b;q)m =1 (mod 7).
in Og. Therefore. [K(a.b:q)| cannot be equal to 2,/q. since (2,/9)* = dg =0 (mod 7).

3 Ramanujan graphs

We prove the following theorems (Theoremn 3.1-3.4). (We omit. Theorems 3.3 and 3.4 here.) Here
we note that we use Lemma 2.2 erucially, in the proof of the claim in Theorem 3.2, when m becomes
large.

Theorem 3.1. In Cqsc 1, i.e., in the associution scheme X(GOo, (Q7), Vo (), the graph
(V. ) = E,(2m,Q,p') is Ramanijan for 1 <i<q- 1.

Proof. For | < i < g -1, the valency &; of the graph (V, /) is cqual to ¢*™~! + ¢~ 1. From
Lemma 2.1 and (6) (or Lemma 2.2) we have

g™l < gt < @V - T

for all iy; = 1,(2.9.4 = 1) (0 < j < q—2). Hence the eigenvalues of the graph (V. R;) satisfy the
Ramamjan bhound (1). O

Remark 3.1. It is not diflicnlt to see that the graph (V. R,) = E,(2m.Q.0) is not Ramanujan if
and only if ¢ > 7, or (g.m) = (5.2).

Theorem 3.2. We fir q. Then in Case 2, i.c., in the association scheme X(G02,,(Q%), Va2, (q)).
the graphs (V. ;) = E,(2m.Q%,p") (1 < i < ¢ - 1) are Ramanujan, if m is sufficiently large (i.e..
larger than « certain number which is determined by q).

Proof. The valencies k; (1 Si<g—1)are ¢ ' ~¢™~ Let [l = [7;(2,4.9 — 1) = Cj /G, then
by Lemma 2.1 and Lennna 2.2 we have 0 < C; < 2. Therefore

(Qm)Q _ |qm—|"j|2 =(4- C“_;‘z)(l'-,'”kl _ *1(["“" -4
is positive when m is large. so that satisfies (1). ]

Remark 3.2. We note in particular that if 5] < 24 =2 (0 < i < ¢ — 2), then all the graphs
E,(2m,Q%.p') (1 € i < q—1) as well as all the graphs E,2. Q*,p') are Ramanujan graphs.
It is surprising that for many values of ¢ this condition max |5, < 2/ = 2 is satisfied. In the
next section, we give computer experiments when this condition is satisfied. If this condition is
not satisfied. then for small i the graph E,(2m.Q*. p') is sometimes Ramanujan. and sometimes
not Ramanujan. The graph (V. ) = £,(2m.Q*.0) is not Ramannjan if and only if m = 1 and
g2lllorm>1and g > 7.



4 Computer calculations

In this section, we give the results of computer caleulations. We are mainly interested in the
following question: Does the inequality || = [1:(2,9,9~1)| < 2y/g=2hold foralli =0, I,...,¢—
2 ? (See Remark 3.2.) In these experiments, we made use of the computer package "M A G M
A7 (http://magma.maths.usyd.edn.an/magma). The resnlts in the first two tables (Table 1 and
Table 2) are retested by Professor M. Kaneko.

1. First, for each odd prime p < 500, we list the maxiimnn valne of || = |4:(2,9,9 = 1)|

(0<i<p-2),2y/p-2, and the answer to the above question. (Table 1 is omitted here.)

2. For each odd prime 500 < p < 4000, we list all the primes p such that |5] = |n(2.q.q = 1)] >
2y/p = 2 for some i, together with max |7;| and 2y/p=2. (Table 2 is omitted here.)

3. Finally, we give the answer to the question for each prime power g = p" < 3000. (Table 3 is
omitted here.)

Remark 4.1. If ¢ = 2" or ¢ = 3", then the values of [K (a, b; ¢)| are integers. Lachaud and Wolfinann
[10] proved that if ¢ = 2" then the |K(a,b:q)| take all the integer values which are congruent to
—1 modulo 4 and whose absolute values are less than 2,/g. While, Wolfmann [17] proved that if
q = 37, then the values of |K'(a.b: )] take all the integer values which are congruent to —1 modulo
3 and whose absolute values are less than 2,/4. So, the values in Table 3 for ¢ = 27 and ¢ = 37
can be obtained without computer calculation. However, the proof of their claims are nontrivial
and must use algebraic geometry.

Remark 4.2. The primes p (up to 5021) for which max |5;| > 2v/p = 2 make the following series:

7,17,53, 139, 163, 211, 463, 51, 1093, 1723, 1747, 1931, 2111. 2671, 2713, 2731,
3121, 3593, 3853, 4057, 4733, 5021, ... .,

It seems that these primnes seem pretty umch random. (It would be interesting to know how often
they ocenr, say.) It would be interesting if we could find any regularity in this series.

Remark 4.3. Theorem 3.2 asserts that the graphs Eg(2m,Q*, p') (1 <i < ¢ — 1) are Ramamjan
if m is large. 1t turns ont that for all ¢ considered above (that is, for all primes 2 < p < 4000 and
for all prime powers ¢ = p” < 3000), these graphs are Ramannjan as soon as m 2 2.
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Finite analogues of non-Euclidean spaces and Ramanujan graphs
Eiichi Bannai, Osamu Shimabukuro and Hajime Tanaka

Dedicated to the memory of J. J. Seidel

Abstract

This is a companion paper of “Finite Euclidean graphs and Ramanujan graphs” by the
same authors.

Finite analogues of the Poincaré upper half plane, i.c., finite upper haif plane graphs, were
studied by many researchers, including Terras, Evaus etc.. Finally, it was proved by combining
works of A. Weil, P. Deligne, R. Evans, H. Stark, N. Katz, \V. Li and many others. that the
finite upper half plane graphs of valency ¢ + 1 over the faite field F, are all Ramanujan
graphs. In this paper, we obtain further examples of families of Ramannjau graphs, by using
previous works on association schemes and the calculations of their character tables, which
are in some sense analogues of the finite upper half planes over finite fields, i.c., finite versions
of non-Euclidean spaces. A key observation is that in many (but not all) cases, we can obtain
a sharper esitimate |0] < 2,/ =2 on eigenvalues, instead of the original 8] < 2,/g, which
was proved by Katz. We combine this observation with the ideas of controlling association
schemes and the Ennola type dualities, in our previous papers such as Bannai-Hao-Song (1990),
Bannai-Hao-Song-\Wei (1991). Bannai-Kwok-Song (1990). Kwok (1991), Tanaka (2001,2002)
and many others. At the end, we remark that for each fixed valency k& > 3 there are only
finitely many distance-regular Ramanujan graphs of valency &.



Introduction

The finite upper half planes over finite fields Fq have been studied by many anthors. When ¢
is odd, they are defined as follows (sce Terras [19, Chapter 19] for details). Namely, let § be a
nonsquare element of F;, and we define the finite upper half plane H, by

Hy={z=a+yV/b|ryeF,y#0}CFau.

The projective general linear gronp PGL(2,q) acts transitively on I, by the fractional linear

transformation:
ax+b

9 = e
ab

for g = (¢%) € PGL(2,q) and = € H,. Group theoretically, H, is the homogencous space
PGL(2,q)/Zy+1, where Zg 4, is a cyclic snbgroup of order ¢+1, and this is identienl to GL(2,¢) /G L(1,¢?).
Also note that the pair (PGL(2,q), Z,+,) is a Gelfand-pair, namely, the permutation character of
PGL(2,q) acting on PGL(2.q)/Z44\ is multiplicity-free, or equivalently, the associated association
scheme is commutative (we refer the reader to [2,1] for the background in the theory of comnmta-

tive association schemes). In fact. this particular association scheme satisfies the stronger condition

that it is symmetric. For odd ¢, the character table P, of the association scheme corresponding to
PGL(2,q)/Z441 is described as follows:

1 1 g+1 ... g+1]7
1 1
11 (Yijhigicq-1
A= Tig5%0-2 . 1))
1 -1
1 -1
-3 l —l -

The entries ¢%; are elements of Q((g-1) U Q((q41 ), where (,, = exp(27v/~1/n). and it is known
that they are expressed by using power sums and Soto-Andrade sums (see [19, Chapter 19-21]).
A regular graph of valency & is called Ramanujan if all eigenvalies @ such that [@] # k satisly

6] < 2vE - 1. (2)

By combining works of A. Weil [20], P. Deligne. R. Evans (9,10, H. Stark, N. Katz [11,12]. W. Li
[14] and many others, it was proved that the finite upper half plane graphs of valency ¢ + 1 over
the finite field Fy are all Ramanujan graphs, that is, we have

[vis] < 24/g. (3)

forall1<ig<q-1.1<j<q-2.

Here, we give an example of an interesting family of multiplicity-free permutation groups. or
commutative association scheines which are close relatives of the finite upper half planes over fi-
nite fields. Namely, we consider the homogeneous space PGL(2.q)/Zq_\. where Z,_; is a cyclic
subgroup of order ¢ — 1. Strictly speaking, it is known that the permutation gronp PGL(2.q) on
PGL(2,q)/Z,-, is not multiplicity-free (hence the associated association scheme is not conmuta-
tive), but if we take G = Z» x PGL(2,q4) = GO3(q) and K = Zy x Dy_ (= Dy(,-1)) where D, _,
is a dihedral subgroup of order g — 1, then the permutation group G on G/ K is multiplicity-free,
and moreover, the associated association scheme is also symmetric. The association scheme G/ K
is of class ¢+ 1, while the association scheme PGL(2,4)/Z,411 is of class g — 1. The character table
P, of the association schieme G/ K is of the following form (see [7,13]):

— 74 -



I 1 20q-1) 2(¢q-1) ¢-1 g—1

11 q—3 -3 -2 ~2

1 -1 ¢g-1 —(¢-1) 0 0

1 1 -2 ~2

Pr=11 1 -2 -2 (—vijhicigq-1 . ()

1<y<q-2

1 -1 -2 2

1 -1 -2 2

1 -1 -2 2 |

Note that the saime guantities ¢%; appear in the both character tables. This is not an accident,
but is a phenomenon called Ennola type duality, and was observed and explained in Bannai-Kwok-
Song [7]. In general, the graphs of valency ¢ — 1 attached to G/K. i.c.. the graphs of valency
q — 1 whose edge sets are orbits of G on G/K x G/K. are not Ramanujan (all the eigenvalues
of these graphs appear in the corresponding colmnms of ). However. it is casy to see that if
the condition |¥;] < 2/ =2 (1 £ 7 < ¢ — 1) is satisfied for a fixed j € {1,2....,4 — 2}, then
the graph of valency ¢ — 1 corresponding to the colunm of £ is Ramanujan. As we will see in
Scetion 8, our computer experinents show that for odd primes p < 500, this condition is satisfied
abont approximately 90 pereent cases of j. Therefore, we obtain many Ramanujan graphs with
valency p— 1. Later, for ¢ = p" with r odd. we will prove a rigorous (but easy) result |5 < 2,/4,
which is weaker than [¢4,] € 2¢/g — 2. but better than the previous honnd (3) (although we have
assuted (3). see Lenna 2.1). We will use this result to obtain many other examples of families of
Ramanujan graphs. See theorems 2.2, 4.2 and 6.1.

The remaining part of the paper is devoted to showing that essentially the same methods
work for far wider classes of association schemes. Namely, we consider all the association schemes
cousidered in papers [5,6,17], and obtain many examples of families of Ramamijan graphs.

Note that, by our constructions, we have only linitely many such graphs for cach fixed valency,
and so this does not give the answer whether we can construct infinitely many Ramanujan graphs
with a fixed valency (cf. [15]). However. we still believe that the constructions of many examples
of Ramanmujan graphs given in this paper are interesting even if the valency is not fixed. In passing,
as an immediate conscquence of Bannai-1to [4] on the spectra of distance-regular graphs, we will
show that for each & > 3, there are only finitely many Ramanujan distance-regular graphs with
valency k.
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1 Introduction

In this paper, we consider the association scheme defined by the action of the
orthogonal group over F,; on the external lines, where ¢ is a power of 2. First
we consider relations between the action of orthogonal group and that of its
commutator subgroup on the set of external lines. Next we compute the character
tables of the association schemes in the case of the four-dimensional orthogonal
group and its commutator subgroup. In the case of four-dimensjonal orthogonal
group, the association scheme can be obtained from the action of SU(2,4¢%) or
SL(2,q) if the orthogoual gronp is O*(4,¢) or O~ (4, ¢), respectively.

2 Preliminaries

First we give terminologies on finite projective space and orthogonal gronp. In
this paper, we denote by Fy the finite field with ¢ clements. Let ¢ be a power
of 2, and let p be a primitive clement of Fg2. Let V' be the vector space over
Fg, with basis e1,e2,...¢, where n = dimV is even and at least 4. Let @ be
a non-degenerate quadratic form on V over F,; and define the orthogonal group
oQ):

O(Q) :={g € GL(V) | Q(gv) = Q(v) for all v € V}.

Denote by 2(Q) the commutator subgroup of O(Q). Let B be the symetric
bilinear form obtained from @. It is well known that there are two types of non-
degenerate quadratic forms, which are called hyperbolic type or elliptic type.
When n = dimV, if @ is a guadratic forin of hyperbolic type, denote Ot (n, q)
as O(Q) and if Q is a quadratic form of elliptic type, denote O~ (n,¢) as O(Q).
Similarly, we denote Q2 (n, ¢) as Q(Q). It is kuown that if dim V is even, then
10(Q) : Q)| = 2. Morcover, for an element g of O(Q), ¢ is in Q(Q) il and only
il rauk(g + idv) is even (sce [3, p.160]).

In the projective space PG(V) defined from V', we call a 1 and 2-dimensional
stubspace of V' a (projective ) point and a line, respectively. We say that a point
(v) is singuler if Q(v) = 0. A line L is said to be isotropic. secant, tangent,
or external if the munnber of singular points contained in L is g + 1.2,1, or 0.
Remark that any line is isotropic, secant, tangent, or external.
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is a quadratic form of elliptic type, hence Q(Q~) = Q7 (4,¢). It is known that
Q(4,q) ~ SL(2,4%). An isomorphism from SL(2,¢?) to Q(Q~) can be defined
as follows: to X € SL(2,¢?), assign gx € Q(Q~) = Q~(4,¢) by the rule

g.\'(clic‘lvelhed) = (61)821631 64)(X ®’—\;) (1)

where X := (ij)lsi_jsg.
Hyperbolic type: Consider another Fg-subspace of v,

V* = {z1e) + 2262 + zde3 + zleq | 21,22 € F}.

Then V* is a four-dimensional vector space over F, with basis e, + eq, pe; +
ples, e + e3, pea + pley, and the mapping

1
QF(z1€1 + 20e0 + 23e3 + 2]ey) = z'l’Jrl + 23t

is a quadratic form of hyperbolic type, hence Q1) = 2%(4, ¢). It is known that
Qt(4,q) = SU(2,¢%)? where

SU2,¢%) = {UeSL2,@)|UT=1}
B {( ;{;'1 nﬂ" ) a,8 € F, a?*! 4+ g7 =1}'

An isomorphism from SU(2,q¢%)? to (Q*) = Q% (4, q) can be defined as follows:
to X,Y € SU(2,¢%), assign gxyy € UQT) = QF(4,q) by the rule

g(.\'.Y)(claCZ;elh 84) = (81,82,03,(34)(X ® Y)' (2)

Now we give terminologies about association schemes. Let X = (X, { Ri}o<i<d)
be a symmetric association scheme . For each i in {0,...,d}, let A; be the adja-
cency matrix of the relation R;, that is, the rows and columns of A; are indexed
by X and

(A4) .={ 1 if (sy)€R,
vy 0 if (x,y)¢R;.

Then we have '
AiA; = Z Pl Ax
k=0

for any i,j € {0,....d}. So Ag, Ay,--- , Ag form a basis of the commutative alge-
bra generated by Ag, Ay, --- , A4 over the complex field (which is called the Bose-
Mesuer algebra of X). Moreover this algebra has a unique basis Eg, Ey,--+ , Eq4
of primitive idempotents. One of the primitive idempotents is |X|~'J where J
is the matrix whose entrics are all 1. So we may assume Eq = |X|™1J. Let
P = (pi(i))g<; j<q be the inatrix defined by

(Ao Ay --- Ag)=(Ep E\ --- Eu)P.

We call P the character table of X.



Let G be a finite group acting on a finite set X. Then G acts naturally on
the set X x X with orbitals Rg, Ry,..., Rq, where we let Ry = {(z,z) | z € X}.
If, for any orbital R;, {(y,z) | (z,y) € R} = Ry, then X = (X, {Ri}o<i<a) forms
a symmetric association scheme. We denote this association scheme by X(G, X).
In particular, when X = G/K for some subgroup K of G, we write X(G, K)
instead of X(G,G/K).

3 Relation between X(0(Q),L) and X(Q(Q),L) when
dimV is even

When dimV is odd, since Q(Q) = O(Q), Q(Q) acts on L transitively and cach
orbital of O(Q) on L is also an orbital of Q(Q). Hence X(0(Q), L) coincides with
X(Q),L). In this section, we compare the orbitals of O(Q) with the orbitals
of 2(Q) when dimV is even. So, in this section, suppose that dimV is even and
at least 4.

3.1 When dimV >6

Lemma 3.1. (i) Suppose that dimV = 4 and O(Q) = O*(4,q). Then for an
isotropic line I, Q(Q); = O(Q);-

(ii) Suppose that dinV = 4. Let wy,we be a basis of a tangent line. Then
QUQ)w, u; is a subgroup of O(Q)w, w, with index 2.

Proof. (i) is already known (sce [3, p.172]). For (ii), we necd only to prove
that, for a fixed basis w;,w; of a tangent line, (Q)w,.w, is a subgroup of
O(Q)w, w, with index 2. Indeed, for any other basis w], w5 of a tangent line,
from Witt's Theorem, there exists ¢ € O(Q) snch that (gun, gws) = (w], wh).
Since Q(Q) is a normal subgroup of O(Q), we have AQ)u, ey, = UQ)guw, gu, =
9UQur 9" Honce Q) ut s | = 9@ )iy el

When Q is elliptic, we may suppose that @ = Q™. Put w; =€), ws = ea +e3.
Then wy, ws generates a tangent line and Q(zw) + yun) = y? for any x,y € F,.
Show that

{X | X € SL(2,¢%), gx € UAQ)uwy w2} = {( (1] 11: )

:vqu}.

For X = ( f; '3 ) in SL(2,¢%), from the definition of gx, gxw, = aftle; +

ayles + alyey + vt ley. So il gx fixes wy, then a¥*! = 1 and 4 = 0, hence

X=(“ A

0 a-! ) Since gxwe = (af? + a¥B)e; + a' %y + a¥ ey, if gx fixes

wo, then a?=! =1 and a3 + a3 = 0. We have already showed that a9t! = 1,
soa =1and 37+ 3 = 0, that is, 3 € Fq. Conversely, we can sce that if

X = ( (1] ; ) for some x € Fy, then gx fixes wy and wy.
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line (v). Let {(w) be the singular line of . Since dim!{; + I = 4, I has a point
(u + w) where u is a vector in I, hence 2 = (v,u + w). But since B(v,w) =0
andvel Cit, B(v,u + w) = B(v,u) = 0, which is a contradiction. Therefore
I3 is skew to U'.

Suppose that !’ is isotropic. Then O(Q) must be O~ (6, ¢) and O(th.l.) must
be O*(4,q4). Since the line ¥ is isotropic and dimi{; + lp = 4, {3 is skew to )
and I'. Hence l = (v + wy,v2 + wy) for some basis vy,v2 of {; and for some
basis wy, w2 of I'. Let I3 be an external line in the orbit O(Q);, 2. Then since
o@Q), = 0(Ql,) x O(Qly, 1), Is = (;1Lg2)le = {g1v1 + gawi, G1v2 + gawa) for
some g1 € O(Q|,),92 € O(Q|;,1)- Suppose that g1Lgz ¢ Q). Then from
Lemnma 23, g1 ¢ QQl1,),92 € AQ;,1), or ;1 € AQ|,), 92 € Q). If
0 ¢ QR ). g2 € QY 1), then idy, Lgo is in Q(Q):, and maps an external line
(g1v1 + wy, g1v2 + we) to I3. Since {g1v1 + wy, g1va + wa) = (v + wi, v2 + wh)
for some basis w}, wj of {(w), wa), from Lemma 3.1-(i) and Witt’s Theorem, there
exists an element g of QQ|;, 1) = O(Q|;, +)r such that wy = gw,,wh = gw.
Hence idy, Lg2g = (idy, Lg2)(idi, Lg) € QUQ), maps Iz to 3. If g1 € R(Q|1, ), 92 ¢
QQ;,+), then for g3 € O(Qli,) \ QL) and g5 € O(Q];,+) \ UQI,, 1), put Iy =
(931ga)l2. Then I3 = (9195 " Lg2gi s, 995" ¢ QI ), 9207 € Q| 1) Tt
follows that there exists an clement id;, Lg of Q(Q);, such that w3 = (id;, Lg)ly =
(93Lgga)l2. and g31ggs € QUQ),-

Suppose that I’ is a tangent line. Then since dimly + & = 4, lp = (v, +
wy, v2 +ws) for soe basis vy, v of {; and for some basis w;, w2 of . For g, Lgs €
0(Q), = O0(Qly,) x O(Qy, 1), let I3 = (g1Lg2)l2 = (qv1 + gaw1, g1v2 + gowa). If
g11g: ¢ Q(Q),, from Lemma 3.1-(2), there exists an element g of O(Q), 1 )w;,w, \
QN 1wz S0 g1 Lg2g = (g1Lg2)(id, Lg) € Q) and (g1 Lgag)le = 3.
Thercfore we complete the proof of Theorem 3.2, O

3.2 dim V=4

In order to compare the O(Q)-orbitals and the Q(Q)-orbitals, we construct the
Q(Q)-orbitals by using isomorphisms Q*(4,q) ~ SU(2,¢%)? and Q~(4,q) =~

SL(2,4%). Put
1
A()1=(pp_1).301=(1 )’

v) = ez +e3 and v2 = pea + pPez. Then, with respect to (V*,Q%) and (V~,Q7),
the line (e2 + e3, pea + pYeg) is external and the element of A/ ~ corresponding to
this line is {(e2), (e3)} since (pv; +v2)/(p+p?) = e2 and (pv1 +v2)/(p+p%) = €3.
In this subsection and in the next section, put ! = (e2 + eg3, pea + p%;).

Lemma 3.3. (i) If Q = Q~, then Q) = {9x | X € (Ao, Bp)}.
(il) If Q = Q*, then

AR = {gxy) | (X,Y) € (A", 1), (1, A™"), (Bo, Bo))}-

Proof. (i) It can be easily scen that any X € (Ag, Bp) satisfies gx fixes I. Since
the line i+ is secant, from Proposition 2.3,

1AQN| = 21Ql) x AQ+)| = 24" = 1) = [{gx | X € (Ao, Bo)}|.



Thercfore we have Q) = {gx | X € (Ao, Bp)}.
(ii) It can be easily seen that any (X,Y) € ((A3™".1). (1, AS™"),(Ba, Bo))
satisfies g x vy fixes {. Since the line I+ is external, from Proposition 2.3,

Q)] = 2(g + 1)* = [{gxvy | (X.Y) € (A", 1), (1. A™"). (Bo, Bo)}I-

Therefore we have Q) = {gx.y) | (X,Y) € (A5, 1), (1. AS™"), (Bo, Bo))}.
O

Corollary 3.4. (i) X(2~(4,q),L) is isomorphic to 2(SL(2,4*),0*(2,4%)). (ii)
X(Q*(4,9).L) is isomorphic to a quotient scheme of X(SU(2,q%).Cy+1)? where
Cy+1 is the cyclic group of order q + 1.

Put H = (Ao, Bo) and K := ((AY™', I),(I, AZ™"), (Bo, Bo)). From Lemma
3.3, the set of relations of X(2(4,¢), L) corresponds to the set of double cosets
H\SL(2,¢%)/H and the set of relations of X(Q*(4,q). L) corresponds to the set
of double cosets K\SU(2,¢?)?/K.

The set of double cosets H\SL(2,¢%)/H has been determined by Tanaka [5].

Theorem 3.5. The set of double cosets H\SL(2,¢%)/H consists of

Hy = {Xe SL(2,4%) | only one entry of X is0}.
Ho= {x= (2 0) este) lapmbe iy =),
(t=1,-++,¢%/2-1) and H. |

Next we determine the set of double cosets K\SU(2,¢?)*/K. For a,b € Fy,
let [a,b] == {(a,]),(a +1,b+ 1)}. and put [F2] := {[a,}] | a,b € Fy} For an
element a of F,

K, = {( [‘;q (ﬁf, ) € SUQ, ¢)

Then we have the following.

gt = a} .

Lemma 3.6. The sel of double cosets K\SU(2,q*)*/K consisls of
Ko p) = (Ka x Kp) U (Kas1 X Kpyt)
where [a,b] runs through [F3].

Proof. First we show that the set of double cosets (Ag_l)\SU (2,9%)/ (Ag_') con-
sists of { Ka}aeF,-

* I
For X = ( [‘;, f,, ) X' = ( [‘;,,, f,q ) € SU(2,4), if X is in the double
coset (Ag_l)X(Ag-l), then
o g Pa-DH)  ple-D-0g
( 37 o' ) = ( pla-DG=0ge H=@-Ds+ g0 ) 3)

N 2
for some integers 8.t , hence a’tt! = pla’—Me+tlqa+l — qa+t,



Conversely, if a®+! = a’*! then §9*' = a9%! =1 = o'9*! + 1 = glotl,
Let &', be intergers which satisfy o’ = p@=D%a, #' = pl@=V'G. Then in-
tegers s, ¢t such that 2s = &' + 1/, 2t = s’ — ' (mod q + 1) satisfy the above
equality (3), hence X/ € (Ag")X (Ag_'). Therefore cach K, forms a dou-
ble coset of (Ag_')\SU(2,q2)/(Ag_l). Now we can see that if X’ = ByX or
X B, then a’*! = %1 4+ 1, and if X' = BgX By, then /9! = a%*1. Since
((Ag_',l),(l, Ag'l)) is a normnal subgroup of K, for X.Y € SU(2,¢?) such that
X € K,,Y € K,

K(X,Y)K = {(Bo, Bo))(Ku x Ks){(Bo, Bo)) = (Ka X Kp) U (Ka41 X Kpy1).
Therefore each K|q 4 forns a double coset. a

Theorem 3.7. Suppose that dimV = 4. Then for a pair (I, m) of external lines,
O(Q)-orbital O(Q)({,m) is also an Q(Q)-orbital if and only if i meets | or I+,

Proof. When Q is elliptic type, then we may assume that Q = Q@~. From Lemma
3.3 (i), the orbitals of the action of Q(Q) on L are

{(axl.ox!) | X € SL(2,¢*)}, and
{(gz\'lh‘/)’l) | X~Y € SL(2|()2)1X—1Y € Ht} (’ =0,.. -,02/2 - 1)'

Now put v := 0 if t =0 (mod ¢* — 1), (1 + p*)~! otherwise and let

,'=(1 ’)‘(4‘1)
i - 1 -/t -

Then Yx, € Hy. Since for g; := gy,, g7 is spauned by g (e2+e3) and g:(pea+pies)
t is a multiple of ¢ — 1 or ¢ + 1 if and only if gf meets [ or I+. Hence gx!

meets [ or i1 if and only if X € H; for some t such that ¢ — 1|t or ¢ + 1|¢.
Consider the following lincar transformation

gler, ez, e3,€4) = (1, €3, €2, €4). (4)
Then g € O(Q™)\ Q) and g fixes {. Morcover we have that gg; = ggeg, hence
g maps gl to ggl. It follows that for each t,
O(Q 7 )ilgl) = {gxl | X € H U Hy}.

Hence O(Q ™ )i(gdd) = UQ ™ )i{gel) if and only if H, = Hy, cquivalently, g — 1|t or
¢ + 1j¢. Therefore we proved that O(Q ™ )ym = Q(Q~ )y if and only if 1n meets {
or I+,
When @ is hyperbolic type, then we may assume that Q@ = Q*. From Lemma
3.3 (ii), the orbitals of the action of (@) on L are
{(g(x,)')lv ‘(](Z,“")l) | Xv yv Zv We SU(2~ (12)5 (X_ ! },v Z-l ”/) € l\’lﬂ,b]}

. a+1 a .
([a,0] € [Fj,]). Recall that X, = ( e a4+l ) € SU(2,4%). The pair

(Xa) Xar) 18 in Kjg2 g2} For goor i= 9(XaX,)» Gaa’l is spanned by

Jaw(e2+es) = (a+d)er+(e+e +1)ex+ (a+a +1)eg+(a+a)ey
ai(pez + ples) = ((a+ )a'p +a(d + 1)pYer + ((a + 1)(d’ + 1)p + ad'pT)eq
+{(a + 1)(a’' + 1)p? + ad'p)es + ((a + )d'p? + a(a’ + 1)p)ey



Soa =a’ or & + 1 if and only if g, ool meets { or I+,

Now the linear transformation g defined in (4) is also in O(Q*) \ (Q™*) and
fixes {. Moreover we have that gg(, oty = g(a )9, helice g maPs ga o1)! O G(a 0)l-
It follow that for a,a’,

O(Q+ YilGawl) = {g(x,y)l | (X, Y)e I([a,a’] U I([a’,u]} .

Hence O(Q*)i(g(a.a)!) = SUQT)1{g(a.ary) if and only if K} = Kig.q)» cquiva-
lently, @ = ¢’ or @ = @’ + 1. Therefore we proved that O(Q*)m = QQt)m if
and only if m meets / or I*. O

4 Character tables of %(2(Q),L) and X(O(Q),L) in the
case of dimV =4

In this section, we compute the character tables of X(((2),L) and X(0(Q),L)
in the case of dimV = 4 from the result of Section 3.
4.1 0(Q)=0"(4.q)
From Theorem 3.5, the relations of X(27(4,¢), L) are
Ro = {(9xlgx!)| X € SL(2,¢")},

R {toxt.gvl) | X,Y € SL(2,¢®), XY € H,} (1<t <g*/2-1), and
Rz {tgxl,ovD) | X.Y € SL(2.¢°), X~'Y € Hp}

The character table of X(27(4,q),L) =~ X(SL(2,¢%),0%(2,¢*)) is computed in
Tanaka’s paper [5]:

1 ¢2-1 @ -1 2(¢*-1)
1 -2
(Piih<igeq /21 :
1 -2
1 -2 2 42-3
where )
q*/2-1

pi(i) == — Z (—1)TUR) (gik | g=iky
k=1

T(j, k) := 'I‘l'p,,_,/p,_,('yf('yf + 1)v;), (recall that v; = (1+p7)~"') and € is a primitive
(g% -1)-th root of unity in the complex field. The ordering of columns corresponds
to R(). R[, [ Rq2/2.

The relations of X(0~(4,¢q), L) are

Ro, Ri (g—1tor g+ 1]t), Ry and RiURg (1 £0 (mod ¢* - 1),

In order to compute the character table of X(O~(4,¢).L), we show the fol-
lowing leinma.



Lemma 4.1. Let o be a permutation on {1,...,¢%/2 - 1}:

) = 2i if1<2i<qg’/2-1,
a(i) := @ -1-2i otherwise.

Then po(@~"(0)) = p3(0)-

Proaf.
q2/2-1
Poy(@1@) = = Y (1)U (T . mo Tk
k=1
g?/2—1
= = 3 (- ) | e e lk)),
k=1
Since /2 ifii
RV if # is even,
o= (i) = { (2 -1-14)/2 ifiis odd,

we have g9 (V0(K) § g=0 7 @Do(K) = gk 4 =i Gince p?) = % or p~, we have
P8 4 =) = (pF + p7F)2 and v,(;) = % or 1 + 47 Hence

T(a(5), o(K'))

Trp /02 ((07*) + 077 ¢)) 220 5)
= Trem((0¥ +07)72y) o
“Fqg/r-',((ﬂkl +p7¥) 2L+ ).

Since Trpqg/ﬁ((p"" 4+ p~%¥)=2) = 0, we have

T(o(§) o (K)) = Tre o /p, ((0° + 7)), = T(LK).
Therefore
q?/2-1
Potle ™ @) = = Y (“)TOEX 4 o) = pyci).
k=1

d

For the permutation ¢ in this lemma, 7 := ¢” where r satisfies ¢ = 2" is an
involution. Indeed since o(i) = +2i (mod ¢% — 1), 7%(i) = 02" (i) = £q¢% = =*i.
Moreover we have that p.;(7(?)) = p;(i).

The character table of X(0O~(4, ¢), L) is obtained from that of X(27(4, ¢),L)
by combining i-th column and 7(¢)-th column where i satisfies 7(¢) # i. So the
character table of X(O~(4, g),L) can be written as follows:

1 (12—1 q‘.’_ 1 2((12—1) 2(q2——l) 2(q2— 1)
1 p;(?) p;i(i) + priy(i) -2

1 pi(é) p;() + pr(j)(3) 2

1 -9 .. -2 —4 -4 (]2—3



42 0@Q)=0"49

Put K’ = (Ag'l). Let Ty := y(g41): € Fq and {Si}oci<q—1 be the set of relations
of X(SU(2,¢?%), K') and S; corresponds to the double coset K, if 0 < ¢ < g/2—-1,
Kisr, o, fq/2<t<q—1 RemarkthatT_,=1+T, g/ forg/2<t<q-1.
From the paper of Evans [2], the character table of X(SU(2,¢%), K') is

(5 -5)

where
1 g+1 g+1
1
A = . ’
: (Au')lgt,tfgq/z-l
1
and
1
1
B=] .
i (Bu)i<i<qs2, 1<'<q/2-1
1
where
q-2
Ay = - Z(_I)T([,:,(q+l)k)e(q+l)tk,
k=1
q
By =~ Z(_l)T(l‘u.(q-l)k)E(q-l)tk_
k=1

The ordering of column corresponds to {S:}o<t<g-1. The relations of the
association scheme X(SU(2, ¢%), K')? are {S; . }o<tucq-1 where

Stu = {(XK"\"YK'),(ZK'\WK")) | (XK',ZK') € S,,(YK',WK') € S,.}.
The character table of £(SU(2, ¢°), K¢)? is

ARA A®A A®A AgA
A®B -A®@B A®B -A®DB
B®A DB®A -BA -BgA
BB -B®B -BQ@B B®B

The ordering of each block corresponds to {Siu}, {Stu+q/2} {St4q/20} and
{St+q/2,u+q/2} respectively, where in each relation set index ¢,u runs through
1<t u<qgf2-1.

From Lenuna 3.6, in the set (SU(2,4%)/K')?,

S00USy2q2 = (XK', YK'),(XK'.YK'))| X.Y € SU(2,¢)}
U{((XK',YK"),(XBoK'.Y BoK")) | X,Y € SU(2,4°)}

forms an equivalence relation and cach equivalence class is

(XK', YK'),(XBoK'.Y ByK")}.



which corresponds to the double coset K, 1, if (XK', Y K'Y or (XBoK',Y BoK’)
is in Sy for some 0 < t,u < ¢/2 — 1, Kr, 141, otherwise. The relations of
X(Q2*(4,9),L) are {R[t.u]}05t$q/2—|,05u$q-—| where

{(gix vyl 9z)) | (XK' YK'),(ZK'\WK')) € St U Stiq/2.u4q/2}
ifo<u<gq/2-1
{laix b gzanyl) | (XK' YK (ZK'\WK')) € Sty U Spaq/2,u-q/2}-
ifg/l2<u<q-1

Ry =

Hence the character table of X(Q*{4,4),L) is

ARA A®A
B®B -BgB /-

In the above character table, the ordering of columns corresponds to rela-
tions { Ry }o<tucqsa-1 for the left blocks and {Ryy4q/2 o<t ucqra—1 for the
right blocks. The ordering of rows are indexed by {[t,«| | 0 < t.u < ¢/2 -1} for
the upper block and {[t,u +¢/2] | 0 < t,u < ¢/2 — 1} for the lower block.

Now we compute the character table of X(O%(4,¢),L). The relations of
X(0*(4,q),L) are Rjoo)» Rjogra)s By Ritgaqra) Where t # 0.1, Ry U Ry y)
and Ry uiq/2) U Riusaqrz) where tu satisly 0 <t <u<q/2-1

For the linear transformation on the ¢/2-dimensional vector space W defined
by the matrix A, let So(A) be the matrix representation on the symmetric tensor
space of W @ W.

Theorem 4.2. The character teble of X(0*(4,q),L) can be written as follows:

$x(A)  SyA) -
(SQ(B) -sz(B))' 5)

Proof. For 0 < t,u < g/2—1, the [t, u]-entry of the column corrensponding to the
relation Spr . (0 < ¥',u' < ¢/2 — 1) is AyrAywr. So the sum of the [¢, u]-entry of
columnns corrensponding 10 Sy o) and S|y ¢r) 18 A Ay + Agyr Aypr, which is smine
to the sum of [u, {]-entry of the two columns. This arguement can be applied to the
other blocks. Hence the matrix of 5 is the character table of X(0O*(4,49),L). O
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TELELVEBENTEHNE, OB EABENVCTEENIMRAETL2DHNT 1T
DB OHBBRUTRENFE A BEOBRTHL L SN TV, PHATRAOIRI L ¥ —
I d0lEHoTIEEY . F070RDL=§ ) — 2 FEORRINFICREL 2 3,

EFE 2.2. B <A b Vir-In#E L(c, h) 1TROFRGELB-T TV - AR, ) &F
fFETHL &, 2252 Y- LIRS,
(i) {vn,vn) = 1, (L(n)u,v) = (1, L(—n)v).
(ii) -, -) RIEEMTH 5,
LoFEHRS ST CHPBYHELT, Lie,h) 225 ) —THELHITEc20,h 20

VRLELRGL 2, ERICEL=5 ) 28O (o, h) BETHRESATED, LT
ihThs,

TR 2.3. ([FQS|IKR]) 7 1 7V O {REOBME Y = 4 PRI L(c,h) H2=¥
) =12 B4 (c,h) RINFOED TH 5,

(Jc>1,h>1Thb (ch).
(i)m FHRBEEL, 1<s<r<m+ P IIHLT

: 6 pom . {r(m+3) —s(m+2)}* -1
m+2)m+3)° 4(m + 2)(m + 3)

Cm =1 (2.2)

ELELED (e ™).

LOZHO (i) ICHTHRE Lic, b)) 6% 17V 0o =2 1) —R5| L5,
WHBEOSFUBIZ 2 LBONTLIVE ) A5 A5 () IFETHERBETHY, V<
LETHHTHRANDTEMRTH L, WHIIKRBL LG 2L —HEFoERLTH

VLWL % o TRV AR TII v 2o, BV - RO L IEEA S > T L RFEHV 22,
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bo FRIZHATHRY (i) RUHMTHY, —2om 2105, BibRLEHLEET S
ERMY A MEIHRMOMLARD Heve EI L CGRERKMELIVEZ S€
Bo T, 2= 4 ) —RIVNIPBRFES R Y —DEFETHELRPER/AL TS,

3 1=42U—7j45v0OVOA

FiB, V17V ORBOBEY x4 PN EHEAROMENAS Eif~7,
SOFLBNRBERDE LB, T1 TV HMOBE I 24 b0 THARISY x
A MINBE Lc, 0) 13T R FE I BOMEN AL, S TEBELTCHE VDI, L(c,0)
s 7vaflBoOmMBETHLEELIL, ZOPIMLEBMENRA>TVDE ENVHHTH
%o L{c,0)-IBEZDWTRAM Y L2,

IR 3.1. (/W) L(c,0) x2=% ) =150 VOA LT 5, 1%#7% L(c,0)-Ini
IRD@HTHbH,

(i)e>1DEZ Lch), he C. —f%IZ L(c, 0)-MBHITELTH TIE RV,

(i) ¢ =cp DEE Liew, hD), 1< s <7 <m+ 1. SRUEED Licy,, 0)-MBE5E
EHTH L,

COEMNPS T 1778 VOANLIZ YY) —FINE2=9)) —Tho ThoseLilivis
FHOLOL LTHMMII SRS, S0LI 2= ) —FHNRIH I BT & o7
235 ATHNY. ﬁk(:ﬁﬁ"jﬁéilf‘l‘z)o 2=4) —;?zﬁua)7.1_“/"='l ‘/ﬁﬁﬂ%ﬂ:ll?k'ﬁié
RT3, ENELEXRBHENIIVOA D7 a— 3 U Hie B80T 5,

EFE3.2.V 2 VOA, WL i=123 %IRH V-MBFL L&, W E W2 Hh6T72—
Ta AREMHINBH L VNl W RW? 258 EVET o TH Y., WIRW? %5
FRIRTICARL72E BT B WA OBBEL LS N . TRL, SORET2—
TVa BRUERER, ZLTIN 72—V a Y RAENCT V OBSMBEEE (Wi ie )
TkOND Z-BHINE: &.6,Z|W) K%

(W] x (W] = 3 M W
kel

TANLbD%E V DT 2—T 3 8 L <3 Verlinde {3 & 1.5,

ER 33 SSTEVOAD 72— a V- BHNZOOTHELWBNE L was, ik
7T/ MROGERIO 2 & THERBFOMRRNL ) L b0 LB TR & 2w,
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TR 3.4. ([W)) V1513 VOA L(c,0)-MBE L(c,, hD) 5D 72— 3 »#HlN
J\'C‘—rx. bilb,

L(Cm hy,"l,) X L(Cvmhs-’:zz) = ZZL(Cnnh](,’.’:)_,-z'_@_g,'_”,l__..2|+-_)j_1)9 (31)
i€l jed
ZIT
I={L2,....min{ry,ro.m+2—r,m+2—-r}}
J={12,....min{s;. s, m+3 —s;.m+3 —s.}}.

L(Cm, 0)-MBED 72— F a Y HBUEFDO TV B E, —oD0HEHEROTORL, b,
1 <s<r<m+1 OfMiE EAMzEAzER W =080, = im(m+1) T
D, ELHH IZEHEINTVE, ThHNT72a—Y a3 BRI LOERIHRDMEY T
Hb,
L(cm.0) X L(Cm, RE™) = L{cim, A,

L{cwm. ym{m +1)) x L(c,,.,h("')) L{cn, Ri™. -

— %12,V % VOA, U % V-MBEE LTIEEOBAME W 0 7a2a—-YVa it UR
W AE B V-IBECIC A B LA, U #B#iALY FEWV I, LORDS Licw,0),
L(cm, %m(m + 1) EHEHH L 2 b L(c,, 0)-INEEIS 2> T2, $RIS Licm, %m(m +1)) x
L(cw, sm(m +1)) = L{c,n.0) TH B, SOOI EHHLZY ) =470 VOA L(cwm,0)
D ZyEHH L Y MEKE LT L(cw,0) S L(cm, 3m(m + 1)) 12 (S)VOA? DHEEHNAS
ENWERNAL, ST VOA D Z,- i KEIX VOA VS EZDHMAL » Mt V! %
FoT Zp-KEAAT- VIDIK VIV DIITH B, LB m =1,2,3 DY
RKOWERMHDZEMNHISONT WS,

om=10D,E& ¢ =1 L1000 L(3,3): 177 7HEBEFIENS SVOA.
om=20tE, =4 LS 00LE.3): N=1 A== 7+ =7 L{{B01
=%y = RO SVOA.

om=3NDLE, cy=1% L(3.0)© L(3.3) : 34K Potts ] LIFIEN 2 VOA (LiE-E
A-LE [KMY]).

CDPHE— D m 122V TH L. 0) ® Licm, dmm + 1)) 124 Jm(m + 1) HEHO
H&121 VOA DRSNS, PEROBEI1ZIE SVOA OHEENAZIAMESRL, Ih
MELWIE% 2 hdsad,

2SVOA = vertex operator superalgebra @ Fi2i PR ML
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4 317> MERE

=% —% 1370 VOA iX Goddard-Kent-Olive {2 & o THAAMIHIR E N, 1
SOMBHEIZTI 2y Y MIEFBELEIFEN 20 TH S, FhEMBICHET S,

V % VOA, U #ZDHE5 VOA £ +5, SOEE V IZBWT U ik boefkii
% VOA %%, Th%x Comy(U) TEL, VIEBIIZ2U DI MERER, &
#hS U & Comy(U) IIHEWIZTRLZDOT V IZIR U @ Comy (U) & FR %L ER5 VOA #F
EENTW2,

Tt Goddard EDEBLMRNE I, Ag, A, 2T 7742 — {8 sl, DAY 24
L(m,j),meN,0<j<m ZREY x4 F (m =)Ao+ A DLNL m O sl DB
BEYf b RAET D, ZOHE Lim, ) SETHG LRI -TBY, 2241 —
BREAAS T D, [FZ 2L Y L(m,0) IZIZBHMAHE VOA DREFA-TEY, £
DEEHMEE L(m, ). 0<j<m THEALND, E6I2IN6DT2—Ta Y HHb B
FENTEN., LFOL I %5 (cf [F2Z)):

min{i.j}
Lim,i)x L(m,j)= > Llm.i+j—2k). (4.1)

k=max{i+j—m)}
FAMMETEHLEZLBI L TRODLENHEYH L Z LT 5,
L£(1,0)® L(m,0) D L(m + 1,0).

EE 4.1. (/GKO))
(i) LOBEMRFICBNT

Comg1.0)@ cimoy(L(m + 1,0)) = L(c, 0).

(i) TOREX L(cm, 0)-MIEEIX L£(1,0) @ L(m,0)-INBEL(1,0) @ L(m,5),0< j <m
¥ Ln+1,0)® L{cy,,0)-MEL LTHBTLZ L THOND,

ZOFERD S, L(cm,0) D Zp-Bidih L 2 PLKIES LIFET 2 4251 £(1,0)® L(m, 0)
DZyHWHAL Y FPERIZEINTWBEEZONDS, COIKIZLI 2L > TH~<LN
Twb,

5 777412 VOA D Z-BiflihL > MK
EBROAK (4.1) XD, Lim,m) D7 a—Ta »HAILROED) THB,
L{m,m) x L(m,i) = L(m,m —i).
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I L(m,m) x L(m,m) = L(m,0) ThHB, SO LHhH Lim,m) (FHFHIL >~ FCH
D, SREHNT Ln,0) FHATELVWOPELLONS, SOMMIT Li 12X > TRk
dhtTtwa,

EIR 5.1. ([Li]) RD L(1,0)® L(m,0) D Zo-BighH L » MEAYEET S,
()m=0 modd D& & L(1,0)RL(m,0) ® L(1,0)® L(m,m) : VOA.
()m=1 mod4 D& & L(1,0)R L(m,0) ® L(1,1)® L(m,m) : SVOA.
(iii) m=2 mod 4 D& & L(1,0)® L(m,0) D L(1,0)® L(m,m) : SVOA.
(v)m=3 mod 4 DL & L(1,0)® L(m,0) ® L(1,1)® L(m,m) : VOA.

LIZTTE& Z,- K% V(m) T,

6 1=42Y—J1+5VO VOA O Z,-BfliHL > ML
TBRER L7 Vim) IR0 EMENS 5,
V(m) D £(1,0)® L(m,0) D L(m + 1,0).

COMEPS Iy MEREIT) SETHATO AN G OIS

ER 6.1. ([LLY])
(1) Comy ) (L(m + 1,0)) = L(cyn, 0) @ L(cm, %m(m +1)).

Bl t U(m) := L(cwm,0) & L(cwm, 3m(m + 1)) 1213 (S)VOA HEENFET %,
(2) (1) TH7: U(m) O (S)VOA HEII—FHTH 5,

(3) m=0,3 modd D& & U(m) IEEE VOA ThHYH, 2TORHMBERVE
D7a—Ta BAGRETE %o

FOEBO Q) RLLEHTHY, ETHETTEHHEICES 2O ITIRREBLI,
AL [LLY) 2 BT E 2,

R 6.2. m=1,2 mod 4 DA, U(m) XHEE SVOA 1245, COBAILETO
BAMBELHETAIILIITELY, 72— a A HHIFTRBEELTW RN, ZThid
SVOA OFIMBENERA—BFMNTL VWO THEHI L L, L4 OBENABEA SVOA
k) VOA I2d B LIZEAT 5,

— 105 —



5T, BRICbHHEBY m=1,2 modd DHEILS Ulm) 2EZLVOEEL7
Wi, ESTHERBIIZ>TLIIHEIE 22203 e THHOREIILTE
ZTR%.

FR 6.3. m FEDHEETE, TNDEEX L(cm,0)® L(cns1,0) DZ-BsEA L ¥
MK

W(m) := L(Cm.0)® L(cms1,0) & Licm, m(m + 1)) ® L(cms1, 3(m + 1)(m + 2))

FEEL., SHIEBENM VOA THbo Wim) OBGNBRIENT 2~ 3
YHINbETHRETE S,

m=10OHEIZIT W) 2612 Zo-HiMiA LY MERTHIEHNTE S,

EHE 6.4. (1) W(1)=L(3,0®L(5,0)® L(3,3) ® L(75,3) P Z-HhH L >~ Mk
KELT

L3008 L(5,0)® L(, o L(5. D) @ [L(}, &) ® L(G, H)*

IZIZHA SVOA DHlENA S,
(2) W(3) = L(3,009 L(§,0) ® L(},3) ® L(3,5) O Z,- WK TR EWIEK

L(3,00® L($,0)& L(§,3)® L(§,5) @ [L(3, ) ® L}, )*

X8 VoA DEEDFA S,

(2) TRRZYEKNE Zy- KD Ao IR TIREVA, [M3] [SY] THRDBATWS VOA
EHHLTETHERETH S, iEL CIISRDO L 2RI L TORBRKFEDEAM ML
DH|EWEHETE 720,
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Vertex operator algebras with two Miyamoto
involutions generating S3

Shinya Sakuma
and
Hiroshi Yamauchi

Graduate School of Mathematics, University of Tsukuba

1 Introduction

One of the most interesting example of vertex operator algebras (VOAs)
is the Moonshine VOA V* = @%,V}! whose full automorphism group is
the Monster simple group M, [FLM]. Its weight two subspace Vzh coin-
cides with a commutative (non-associative) algebra (called the monstrous
Griess algebra) of dimension 196884 constructed by Griess in order to con-
struct the Monster simple group [Gr]. One of the important results is that
each 2A-involution @ defines a unique idempotent ey (called an axis) of the
monstrous Griess algebra such that the inner product (eg,e,) is uniquely
determined by the conjugacy classes of 8¢, see [Co|. The 2A-involutions
satisfy several interesting properties. For example, the Bimonster M { Z,
contains Ysss-diagram as generators, where a vertex is a 2A-involution and
an edge @ — ¢ means |#¢| = 3 and no edge between & and ¢ implies that
8¢ is of order two.

If e is a rational conformal vector with central charge 1 i.e., e gener-
ates a rational VOA L(},0) called an Ising model, then one can define an
involutive automorphism 7, of V' by

) 1 on W0®Wé
Te -1 on Wﬁ’

where W}, denotes the sum of all irreducible VA(e)-modules isomorphic to
L(%,h) and VA(e) is a subVOA generated by e. In the monstrous Griess
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algebra, a conformal vector e with central charge % is corresponding to an
axis and 7, is a 2A4-involution.

A VOA V over R is referred to be of moonshine type if it admits a weight
space decomposition V = @3¢V, with V5 = R1 and V; = 0 and it possesses
a definite invariant bilinear form {-,-) such that (1,1) = 1. Miyamoto
studied a VOA of moonshine type which contains two conformal vectors
with central charge -;— whose 7-involutions generate S; and determined that
the possible inner products of such a pair of conformal vectors are 1/28 or
13/2' in [M]. Furthermore, he determined the structure of a subalgebra
generated by their conformal vectors in Griess algebra V5 of such a VOA
V.

In this lecture, we construct a VOA U generated by two conformal
vectors e, f with |7.7¢| = 3 and (e, f,) = 13/2'°, which has the shape

4 4 6 6
= =,3 2 L(z,
(L(5,0)@L(5, )) ® (L(7,0)€B & 5))
4 2., 6 4., 4 6 4
=, = =, = - L(= . (1
In fact, the structure of VOA of this shape is uniquely determined.
Recently, we proved that a VOA generated by two conformal vectors
whose T-involutions generate Sy and inner product is equal to 13/2'? is
isomorphic to U. Namely, such a VOA exists uniquely. Therefore, the
Moonshine VOA contains U and W(0) = L(2,0) @ L(3,3) as a subVOA.
Then, the automorphism given by the Zz-syminetry of W (0) is 3A element.

2 Preliminaries

For any complex numbers ¢ and h, denote by L(c, 2) the irreducible highest
weight representation of the Virasoro algebra with central charge ¢ and
highest weight 4. It is shown in [FZ] that L(c,0) has a natural structure
of a simple VOA. Let

6 g —
Cp = —(m+2)(m+3) (7”—1,2,,,,), (2)
(L) {r(m +3) — s(m + 2)}2 -1
hs-,s) = 4(m + 2)(m + 3) (3)

forrms e N1 <r<m+land1l < s < m+2 Itisshown in [W]
that L(cy,0) is rational and L(cp, (m)) 1 <s<7r<m+ 1, provide all
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irreducible L{c,,, 0)-modules (see also [DMZ]). This is so-called the unitary
series of the Virasoro VOAs. The fusion rules among L{c,,, 0)-modules [W]
are given by

L(Cnn h‘rl,sl) X L(Cm-,hrg,sz) = Z L(cmvh|r1—r2|+2i—l,|sl—82|+2j-l)1 (4)

iel.jeJ
where
I={12,....min{r,,re,m+2—r;,m+2—r3}},
J={1,2,...,min{s;, s2,m+ 3 —s;,m+ 3 — s2}}.
Since ¢3 = # and ¢; = £, L(2,3) and L(6 5) are simple currents by (4).

It is known that L(3,0)® L(3,3) and L(2,0)® L(%,5) have a simple VOA
structure.

Theorem 2.1. ([KMY]) A VOA L(3,0) & L(3,3) is rational and all its
irreducible modules are the following:

where W(h)t means that L(,,h) has two structures by the Z,-grading of

the VOA W(0) for h =2, 1.

Theorem 2.2. ([LY] and [LLY]) A VOA L(£,0) & L($,5) is rational and
all its irreducible modules are the following:

N(0):=L(%,0)® L(5,5), N($)*:=L(% %,
‘N(%) = L((‘;%)@L(gv %) ‘1\[(9_)_11)i =L($a§lf)i-
IV(%) = L(g’%)GBL(ga l_72)’ N(;_(]))i = L(g’;_?)i’

where N(h)* means fhat L(% h) has two structures by the Zy-grading of
1

the VOA N(0) for h = 10

1’21’2

Let g be the Lie algebra sh(C) with generators h, e, f and relations
[, e] = 2e, [h, f] = —2f and [e, f] = h. We use the standard invariant
bilinear form on g defined by (h.2) = 2 and (e, f) = 1. Let § be the cor-
responding affine algebra of type Agl) and Ay, A, the fundamental weights
for §. For any non-ncgative integers m and j, denote by L(m, j) the ir-
reducible highest weight §-module with highest weight (m — j)Ap + jA;.
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Then £(m,0) has a natural structure of a simple VOA [FZ]. The Virasoro
vector 2™ of L(m,0) is given by

m 1 1
Q= m (ih(_l)h + e(—l)f + f("l)e) (5)

with central charge 3m/(m + 2).
Let m € N. Then L£(m,0) is a rational VOA and {L(m,j) | j =

0.1,...,m} is the set of all irreducible £(m, 0)-modules. The fusion algebra
(cf. [FZ]) is given by
min{j,k}
L(m,j) x L(m, k) = > L(m,j+k—2i). (6)

i=max{0j+k-m}

In particular, L(m,m) x L(m,7) = L(m,m — j) and thus L(m,m) is a
sitnple current module.

Let Ay = Za be the root lattice of type A, with {a,a) = 2 and V,, the
lattice VOA associated with A,. Let

Al ={zxe€Q®z A | (r,a) € Z}

be the dual lattice of Aj. Then A7 = A, U (3o + A;). It is well-known that
Vi, = £(1,0) and Vi, 4, = £(1,1) (cf. [FLM] [FZ], etc.). Let A} = Za'®
Za*®- - - ®Za™ be the orthogonal sum of m copies of A;. Then we have an
isomorphism Vam =~ (Vj4,)®™ ~ L£(1,0)®™. Let H™ := a(‘_l)]l-i-- +alyl,
Em:=¢ 4. +¢" and F™ := e~ +---4+¢7°". Then it is shown in [DL]
that H™, E™ and F™ generate a sub VOA isomorphic to £(m,0) in Vym.
By Va4, ® Vam =~ oar £(1,0) ® L(m,0) contains a sub VOA isomorphic
to L(m + 1,0) generated by H™+!, Em*! and F™*! whose Virasoro vector
+! is given by (5). It is shown in [DL] and [KR] that w™ = Q' ®
1+ 1Q Q™ — Qm+! also gives a Virasoro vector with central charge ¢, =
1—6/(m+2)(m+3). Furthermore, Q™*! and w™ are mutually commutative
and w™ generates a simple Virasoro VOA L(c,,,0). Heuce, £(1,0)®L(m,0)
contains a sub VOA isomorphic to L(cym,0) ® £L(m + 1,0). Since both
L(¢y,0) and L(m + 1,0) are rational, every £(1,0) ® £(m,0)-module can
be decomposed into irreducible L(¢p,,0) ® L(m + 1,0)-submodules. The
following decomposition is obtained in [GKO]:

L(1,6)® L(m,n) = @ L(cm, hfl'i)l,sﬂ) QL(m+1,s), (7)

0<a<m+1
a=n+e mod 2
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where € = 0,1 and 0 < n < m. Note that A% = A" +)2 rm+3—s- Lhis is the

famous GKO-construction of the unitary Virasoro VOAs.

3 VOA with two Miyamoto involutions gen-
erating S3

Let A} = Za! ® Z02 @ ¥ Zar Wlth (a' a’y = 26;; and set L := A} U
(v + A5) with v := la! + 'a2 + 303 + 1a'. Then L is an even lattice so
that we can construct a VOA Vi assoc1ated to L. We have an isomorphism
Vi =Va®V, s = {£(1,00*0L(1,1)®*}®L(1,0). By (7) and the fusion
rules (4) and (6), we can show the following.

Lemma 3.1. We have the following inclusions
L£(1,0)®* > L(3,0)® L(55,0) ® £(3,0), .
L(1,1)® > L(3,0)® L(£,0) ® L(3,3).
Therefore, Vi contains a sub VOA isomorphic to
L£(3,0)® £(1,0) ® L£(1,0) ® £(3,3) ® L(1,1) ® £(1,0).
Lemma 3.2. We have the following decompositions:

£(3,0)® £(1,0) ® £(1,0)
(5,0) ® L(7a0)

L(5 (3.5) ¢ ®L(5,0)

R

&
®® o
L~

=

-~

b~

—_
el G

~—

EX
PROoR0® 9 ® &
b~ b
@:llm
e

-

L ® L£(5,2)

:lla’ﬁ
SIS
~—

D <

b~
—~
ks
[J%)
p
I~
——

= 5

o b~
N~
IS 3

S—"
g N\

-

~[R B
p

L

enfde SR

- -

S whv
h

@ <

b~
—~
[SIFS
o

p
b~
—~
-HMN
i
o

r ® L(5,4),

I~
—
[N
wino
o

I~
—
=]
Ml—-
-0
p —
N
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and

£(3,3) ® £(1,1) ® £(1,0)

1R

N

t~
—_
[ 11
(¥~]
~—

o LEL3)SLED b ®L(52)

&< L(33)0L(E 2 % ® L(5,4).

Hence, £(3,0) ® £(1,0) ® £(1,0) & £(3,3) ® £(1,1) ® £(1,0) (and V)
contains a sub VOA U isomorphic to

[ L(3,0)® L(£,0) ] [ L(3,0)® L(£,5) ]
= &
LEISLES) | & | LE9®LE0) ®)
@ 55
L(3,3)®L(3.3) | | L(§,3) ® L(3,3) |
as the commutant of £(5,0).
Set ) )
5 2 4_o5 —al 05
e:=1—6(( - a®) ) I—Z(e" +e o),

Then, e € U, and e is a conformal vector with central charge il’ We can
check that U; has conformal vectors e, f with central charge ,1—, such that
(e, f) = 3i5 and |r.1s| = 3, and U is generated by such conformal vectors.

By this construction and the Z3-symmetry of W(0) and N(0), we have
the following:
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Theorem 3.3. A VOA U contains a sub VOA W(0)® N(0). As a W(0)®
N(0)-module, U is isomorphic to

W(0) ® N(0) ® W (§)+ &N (§)+ oW (%)_ &N (‘5‘)— (9)

after fizing suitable choice of £-type of N(3)*. Thercfore, U is a simple
VOA and generated by its weight 2 subspace as a VOA.

Theorem 3.4.
(1) U is rational.
(2) All irreducible U-modules are given by the following:

WO) e NO)eWE)*@ NI *oW2) o N(i)

W)@ N(L)eW(E)* @ N(I)* @ W(2)- @ N(3)-,

W)@ NG eWE)r @ N e W(§) @ N5

W(2)® N(0)® W(L)* ® N(A)* @ W()~ ® N(4)-,

W(2)® N() @ W()* @ N(L)* & W(L)" ® N(19)-,

W(g) ® N(?) @ W(ﬁ) ® N(%)+ ® W(ilg)_ ® N('zl‘l)—
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"GALOIS THEORY
FOR

COVERING GRAPHS"

HAROLD STARK

JOINT  woRry
WiTH

AVUDREY TERRAS

REF.)) Apvances IN MATH_

R) n 2 ”

\$%(2000) 132-)95 .
11 (1996) 124 -165,

3) DiMmAcS voc.tme)'ro APPEAR .

%) GROSS AND TUCKER , TOPOLOGIcAL

GRAPH Tueonv) WILEY m'renscleuce,
1992,
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X 15 A FINITE CconNecTep |
GRAPH | POSSIBLY WITH

MV TI-EDGES OR LOOPS. Glve
EACH EDGE OF X A DikecTion

i

(FOR BookKeePwG; X s UNDIRECTes)

/3 oF EACH Eoge STARTING
AT ¥ ANp Y3 oreacy EvGe
Temmnmc AT w,
EXAMPLE . *~Z57 -

[ . / \
[N UD
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2
LET ¥ BE A CONNCCTED FINITE GRAPN. |
DEFINITION: Y 1S A COVERING GRAPN

OF X IF WE CAN ASSIGN DIRGcTIONS |
TO THE €PGES OF Y S0 THAT THERE
EXISTS A MAP Ir: Y=ox which IS |
A HOMEOMORPNISM OF NE16HPORHVODS,
(713 canen A PROJECTION MAP)
SONVENTION. wHeN we spear OF A Cover
T OF X, AN ASSIGNMENT OF DIRECTIONS ‘\

OF EDGEs ofF AW Y AND A PROJECTION
MAP v ARe PRESUMED To BE Givewn AV
Fixeo,

PROPOSITION, ¢ i$
AND o

oNTOo, EVERY ()
'(&) HAS THE camg CARDINALITY,

PEFINITION: TH)S OmMon cArDvALITY
IS CAlleéo Tee PEGREE OF THe coven,
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THEOREM . SUPPOSE Y 1S A coevep

6F X WITH PROJECTION MApP ‘7\’3 AND

PEGREE Jd. LeT P Be A PATH IV X

STARTING AT A VERTEX & oF ¥,
THEN P HAS ExACTLY d LIFTs To ¥y

INPEED , Givew A verrey & ¢ o
WY, TheRe |5 A

(#)
DEFINITION. LET T B€ A spanniNG

TREE OF X. THNE d LIFTS OF T TO Y
ARE CAlLeD T SHEETS oOF y.

SPANNING TREES AND THEIR LIFTS
ARE SHOWN N BLACK.

CONVENTION ON COMPOSITION OF MAPS
+ Anp - I (-P’)o(*) = -Fo(,o(ﬁ)) .
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PEFINITION. SUPPOSE Y AND ¥’ ARC

COVERING GRAPNS OF XWITR PROJECTION

MAPS U ANp %, SUPPOSE ALSO THAT
LiY<y’ 15 A GRAPH 1 SOMORPHISM.

WF W= W, we say THar
15 A COVERING |SoMmORPISAY AND THAT

T AND ¥’ Ape coveawc ISOMORPHIC

(wirn RESPECT To x). p Y=y,

. WE saY { 15 A coveRInG nwomemgg

OF ¥ (wirw Respecy To x).
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DEFINITION, (F Y OVER X 1S OF DEGREE
———————

d AND ¥ HAS d COVERING AVTOMORPNISAS
WITH RESPECT TO X, WE SAY THAT Y IS
A NORMAL COVER OF X , OR THAT Y over

X IS _NORNAL = ANO THAT THE GROUP

G=G(¥/x) OF COVGRING AVTOMORPRISMS
IS THE GALOIS GROUP OF Y OVsR X .

CONVENTION. SUPPOSE Y OVER X IS

A NORMAL COVER WITH GROVP G=G(y/x)
PICK A SHEET OF Y ANP CAW IT
SHEET 1 (WHeRs 1 15 THE IPENTITY oF G),

IF 9€C, WE sAY THAT  9o(sneeT 1)
IS SHEET 9.

PROFOSITION. g (sweey 4)= sneeT 94
PRooF : 9o (Ao sneeT 1) =(9.h)e sweer 3,
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6.5

EXAMPLE:

G={1,9,5% 4,49, 45°}
’3"'.*3:] R ’A=“,?
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COROLLARY . SUPPOSE Y oveR X 1S
NORMAL WITH GROUP G AND THAT P

\S A PATH IN Y STARTANG oN SHEET A AND
ENDING ON SHEET § WHICH PROJECTS To
APTH P N X. |F 9¢G, THEN JoP
IS THE UNIQUE LIFT OF P STARTING ON
SHEET 9i AND ENOING ON SHEFT 94,

THEOREM, SUPPOSE X IS A CONNECTED
GRAPH OF RANK A (WHICH means THAT

X-T CONSISTS OF A EPGES), A FINMITE
GROVP G 15 THE GALOIS GRouP OF A

LONNECTED NORMAL COVER Y OR X

IF Avp ONLY IF G CAN BE GENERATED
8Y =i ELEMENT S
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SKETCH OF THE CONSTRUCTION oF ¥ WHEN
R
G= <2y, 4,,,8, >. LABEL THE A

(pIRECTED) EDGES OF R-T :@ &,,&8,,",&,

LABEL [6] comigs oF T BY GROUP ELEMEUT
9¢G (soow TO BE THE SHEETS OF Y). W

PARTICULAR , IF & 1S A VERTERX OF X,
WE SAY THAT (e, 9) 1S THE COPY OF &
IN SHEET §. LET liIgmsh AND
SUPROSE THAT @ BEGwWS AT VERTEX
i AND ENDS AT VEBRTEX W’ CoONNEECT

(or,2) To (w54,) Anp caw Tue
RESVLT NG

TO THE LAST COROLLARY ) WE CONN6GCT

(o &, 9) TO Q%’o‘)ﬁﬁg) T G5T 9e @m FoR
BacH 3¢G. wien we DO TWIS FOR ALl
M, )StMsh ,We HAVE 7.

| molsmen we e Y

|
t
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COROLLARY, AS A SPECIAL CASE (F

G =<y, 8> , WE GET THE
CAYLEY GAAPH OF & AS A NORMAL

COMER OF X :
(o VERTER , It Loops)

Y
p |
o.‘ .... 4 [ )
..,0 o J‘;',. .
&“;_.uouu ,..:-ﬂ
9 ¥
X
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[

: . T Y \3A cover
DEFINITION: SUPPOSE THAT Y

OF X WITH PROJECTION MAP 7. WE

SAY THAT X 1S INTERMEDIATE To Y

ANP X IF THERE ARE PROJECTION MAPS

M, XX AND ;1 ¥-SX  SUCH THAT

W= MM, . WARNING : THERE CouLd B¢
MORE THAM oNE such pa M, Wy
REALY T8E Tripe

A (X, % %) THaT coves
THE INTERmER TS GRARY
ExAMPLE: V' 9 9™ anp ane

INTERMEDIATE To Vg AN X,

AT I8

EXAMPLE 1 1N TS CONTERT

AND (¥, W', T°) ARE INTERMEPITE , THEN

X AND X° ARE COVERING |30moORPHIC (wiTH
RESPECT TO R) IF THERE 1S A @mme

m L% —af’ sucn TaaT W=

, WX, %w,w,)
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n

DEFNITION. suPPoss (X, ) awp

(¥, %°, ') ARe wwreameniaTe To Y ANDX,

|

WE SAY X=X anp Tx of Yano

AS The SAme INTERMEDIATE GRAPH F

THEre s
i3‘*.-§§‘ SVCN ThaT “QK
AND LA =im

"'/

w i ‘-’x'

\/m

PlCTURE -
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e

THEOREM (FunoamenTAL THM. OF GALOIS

THEoRY). SUPPOSE Y overX 15 NORMAL | s: f(::x;
e 1) SUPPOSE X IS INTEAMED)IATE TO Y AN .“ ™
Y OVER X 1S NORMAL AND THERE IS A SUBG
H=H(RX) f G wiicH 1S G(V/R).

* 2) Two INTGRMEDIATE GRAPNS K, AN ¥, ARE Equuc
(see BERIED H(E,) = R(R,)

° 3) Given A SUBGROUP N
GRAPR ¥ INTERMEOUTE To ¥ Awp x SUCH TNAT
H=6(v/%). we WRITE X =R(n),

® % We pavg H(Xt)=p anop X(mm)= 5.
0 we can WRITE &

OF G, TNERE Is A
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)3

WE DESCRIBE THE CONSTRUCTION GIVING 3).

PEFINITION, SUPPOSE ¥ oveR X 1S NOPMAL

WITH GROUP G, AND LET N BE A SVPGROVP

OF G. AGAN, we wmiTe TNE VERTICES
OF ¥ N The ForMm (u,9) wheas w 18

A VeRTEX OF X, 3¢G , (w,9) IS ON SNerT 9

AND PROJECTS TO &¢ BY XX, THE VERTICES
OF X ARE PAIRS (w, Hy) whees Hy Runs

THROUEH ThHE RieuT COSETS OF K, we

ST RS 1) , %t (4 g s e
IF QY IS A DIR¢eTeD EDGE ofF y

STARTING AT (w,, 9.\ LENDING

AND PROIECTING To @
NeTom v x , WE

€ OF X sraarng A
ENDING AT (n; s

AT (w, 9
IN X Gong Frop
CREATE AN fogE

7 (v, H9,) Anp
N3). W perwg

()= & w(-e. TIs Gives ¥,
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G =f\.9,3',4,4&9,49'} P=A’=1, gh=4g
' Aot
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0

\TION. SUpposE Y oveR X 13
DEFIN

NORMAL WITH GROUP GgG(VIx‘).. sufmt
X oo N, AN0 %o+ N, WE SAY X, ANO %,
ARG CONOUGATE “wirew ¥ ovee X IF

, AND i, ARE CONJIGATE IN G

(e Hpe 3.'3.3 For somé ;tGJ.

EXAMPLE: THE GRAPNS Y, y3", 91"

ARE ALL CONIVGATE WITHIN Y‘ OVER X,

THEOREM  SUPFOSE Y OVER X IS NORMAL
AND THAT ¥, ano ¥, ARE INTERmEDIATS,

Thew X, awe i’i@ ARE COMIVGATE IF

ANB oMLy IF K, awp ¥, ARE covemng
SO MORPHIC,
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e

SUPPOSE Y OVER X IS NORMAL WITH GROVP
G=G(1/x). LET @ BE A (DIRECTED) EDGE

IN X-T AND SUPPOSE THE LIFTING
OF € To ¥ WRICN STARTS ON SHEST )
TERMINATES ON sHEET o(e)¢G,

DEFWNITION: we say o () IS THE

NORMALIRED FRODENIUS AUTOMORPHISM
ING CORRESPONDOING TO e,

LET X BE AN INTERMEDINTE GRAPN
TO 7 OVER X coRRespNdiNG TO H G,

THE SHEETS oF ¥ wie BF LABELED
8Y Tt vamous COSETs H3 or W IV G,

SUPFOSE [G:W)]=m. ¥ we wRiTE

Hal N ,.
”;’t r(e) = M (e) N }"
Ham Him

WHERE M(€) S A PERMUTATION MATRIX
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THEN M(®) IN TURN CORRESPONDS TO
ued

A PERMUTATION|ON M LETTERS" 1,2, m.

THEOREM THE CYCLE STRUCTURE OF

J(€) PESCRIBES THE LIFTS OF € To X,

EXAMPLE : v% BYER X AGAIN . FOR

Hel W, N, We MAY TAxe THe

THRE® COET REPRESEHTATIVES TO BE
2 ¢

1,9, 9°. W€ NAVE Fom @ = (e

2 W(@)@(\ﬂ@w
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e

EYAMPLE (BUSER) G = GL,(F,) onser 18,

H‘a“w&)g %H;:&:)}
SRR s @ @ ®ajd

oTR OF GRDER 29 AND INDEY 2
@
LET A= éafé} ,m{ 257}

V- X @80
SET o(a)=A (b8 ;W _THE RIGNT
OROER THE SEVEN COIFTS OF H, AND N,
GIVE PERMYTATIONS

M, aNe f, WITH
By[8Y= (1936 X 2)59), a1, {8) =2 32){w)5 7€)
ANP

Moln)= (14)(2376M0), Ja, (BY={123)a)(367),
THIS GIVES TWO New-180MORPHIC
\10SPECTRAL GRAPHS AS SCHREIER
GRAPHI | 2T Navsg Loeps ANMD
MUETI-EDGES .,
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]
Q

°

" ‘.on.... o o0 s,

X
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WE EXPAND ‘rHe TREE () oF THE

LAST EXAMPLG AND ADD ONE Moee
EDGE <€ .

AND TAKE o (c)=a(4)=B, 0 (a):A

THeoRem (s-7) X, Anp X, ARE

ISOSPECTRAL , NON=-I1SOMORPNIC
REGULAR GRAPHS WITHOVUT LOOPS

OR MULTI-ED GES.

THIS 1S THE FIRST SUCH EngPl.s
THAT WE XNOW OF,
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M(&)=(436))(s7)
miEy=p(c)
=(132)(4)(57¢)
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R(a)=(4)2376)(s)

Mm(k)=ple)
=(123){4)(567)
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A Steiner triple system ST'S(v) is a set of v points together with a collection of 3-subsets
called blocks or triples, such that every pair of points is contained in exactly one block.
Alternatively, a Steiner triple system ST'S(v) is a 2-(v, 3, 1) design [2]. A recent monograph

A formula for the number of Steiner
quadruple systems on 2" points of 2-rank
2" —n

Vladimir D. Tonchev
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931
USA

Dedicated to Alex Rosa on the occasion of his 60th birthday

Abstract

Assmus 1] gave a description of the binary code spanned by the blocks of a Steiner
triple or quadruple system according to the 2-rank of the incidence matrix. Using this
description, the author [8] found a formula for the total number of distinct Steiner triple
systems on 2" — 1 points of 2-rank 2" — n. In this paper, a similar formula is found for
the number of Steiner quadruple systemns on 2" points of 2-rank 2" — n. The formula
can be used for deriving bounds on the number of pairwise non-isomorphic systems for
large n, and for the classification of all non-isomorphic systems of small orders. The
formula implies that the number of non-isomorphic Steiner quadruple systems on 2"
points of 2-rank 2" — n grows exponentially. As an application, the Steiner quadruple
systems on 16 points of 2-rank 12 are classified up to isomorphisim.

Introduction

with extensive references on triple systems is the book by Colbourn and Rosa [3].

A Steiner quadruple system SQS(v) is a set of v points together with a collection of
4-subsets called blocks or quedruples, such that every three points are contained together
in exactly one block. Alternatively, an SQS(v) is a 3-(¢,4,1) design (see [2] for more on

designs).
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The blocks through a point P in an SQS(v), after having P deleted, form an STS(v—1)
called derived. A subsystem of a Steiner system is a subset of the point set together with the
blocks contained in it that is itself a Steiner system.

Two Steiner systems on the same point set are distinct if their block collections are not
identical. Two Steiner systems are isornorphic if there is a bijection between their point sets
that maps the blocks of the first system into blocks of the second. An automorphism of a
Steiner system is any permutation of the points that preserves the collection of blocks.

The incidence matrizx A = (a;;) of a Steiner system is a (0,1)-matrix with rows indexed
by the blocks, and columns indexed by the points, with a;; = 1 if the ith block contains the
Jjth point, and a;; = 0 otherwise.

Doyen, Hubaut and Vandensavel [4] found a formula for the rank of the incidence matrix
A of a Steiner triple system STS(v) over the binary field (2-rank of A, or ranky(A)). They
proved also that the 2-rank of any Steiner triple systein STS(2" ~ 1) is greater than or equal
to 2" — n — 1, and the minimum rank 2"® — n — 1 is achicved if and only if the system is
isomorphic to the classical one with blocks being the lines in the binary projective space
PG(n - 1,2).

Teirlinck [7] found a formula for the 2-rank of a Steiner quadruple system, and proved
that the 2-rank of any SQS(2") is greater than or equal to 2" — n — 1, with equality if and
only if the system is isomorphic to the classical one having as blocks the planes in the binary
affine space AG(n,2).

In this paper, we derive a forinula for the total number of SQS(2%)’s whose 2-rank is
greater by one than the minimum 2" — n — 1. The main tool for deriving this formula is the
binary code of a Steiner quadruple system.

A binary linear (n, k) code is a k-dimensional subspace of the n~-dimensional vector space
GF(2)" over the binary field GF(2). Two codes are equivalent if they differ by a permutation
of the coordinates. An automorphism of a code is any permutation of the coordinates which
preserves the code as a set of vectors. The Hamming weight of a vector is tlie number of its
nonzero comnponents. For more on codes see [6].

An (n,k) code C contains a Steiner system S on n points if the rows of the incidence
matrix of S are vectors in C.

The code of a Steiner system is the binary linear code spanned by the incidence vectors
of the blocks, i.e., by the rows of the incidence matrix.

Assmus [1] proved that two Steiner triple or quadruple systems with the same number of
points and the same 2-rank have equivalent codes, and up to isomorphism, all Steiner systems
of the same 2-rank can be found in the same code. Assmus also gave an explicit description
of the code of a Steiner triple or quadruple system of given 2-rank and its automorphisin
group.

Using these results, the anthor of this paper found a formula for the number of distinct
Steiner triple systemns on 2" — 1 points having 2-rank 2" — n [8]. It is the aim of the present
paper to derive a similar formula for the number of Steiner quadruple systeins on 2" points
of 2-rank 2" — n.

The formula can be used as a tool for the classification of all Steiner systems of 2-rank
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2" —n up to isomorphism, and for deriving bounds on the number of pairwise non-isomorphic
Steiner systems of 2-rank 2 — n. The formula implies that the number of non-isomorphic
Steiner quadruple systems SQS(2") of 2-rank 2" — n grows exponentially.

2 The code of an SQS(2") of 2-rank 2" —n

Let A be an incidence matrix of the classical Steiner quadruple systemn on 2" points having
as blocks the planes in the n-dimensional binary affine space AG(n,2).
By the results of Assmus [1], the code C,, spanned by the rows of the following matrix

110 ...0
o (147}

contains representatives of all isomorphism classes of SQS(2*)’s of 2-rank 2* — n. Alterna-
tively, C,, is equivalent to the null space of the matrix

H =[Rn-1, Ry-)], (2

where R,,_) is the first order Reed-Muller code of length 27!, or equivalently, R,_, is the
null space of the incidence matrix of the Steiner quadruple system SQS(2"~') with blocks
being the planes in the affine space AG(n — 1,2). This result is implicit in Key and Sullivan
(5]

The description of the code C, as the null space of the matrix (2) implies that the
automorphism group of C,, is a product of the automorphisin group of R,—, with a group
of order 22"™' that corresponds to interchanges of identical coordinates of the two copies of
R,_i. Thus, the following holds true.

Lemma 2.1
|Aut(C,)| = 27" - 2n 2t — 1)(2nt - 2). L (20 - 2R,

The (2",2"—n—1) code spanned by the rows of A is equivalent to the extended Hainming
code H; of length 2". The coordinates of H can be identified with the points of the n-
dimensional binary affine space AG(n,2). The full automorphisin group of H, is the general
affine group GA(n, 2) of order

27(2" - 1)...(2" - 2"7).

The group GA(n,?2) acts 3-transitively on the 2" code coordinates of H;,. Thus, changing
the location of the two ones in the first row of the matrix G given by eq. (1) yields another
code equivalent to C,,. For convenience, we will assuine that, as in (1), exactly the first two
positions are nonzero.

Throughout this paper, we often identify the 2" coordinates of C, with the points of
the n-dimensional binary affine space AG(n,2), that is, with the (0, 1)-vectors with n com-
ponents, ordered lexicographically: coordinate one by 0 = (0,...,0), coordinate two by
1=(0,0,...,0,1), etc., coordinate 2" by (1,1,...,1).
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Lemma 2.2 The code C, contains a total of 2"~ vectors of weight 2 whose supports ure
2"~ disjoint pairs that form a class of parellel lines in AG(n,2).

Proof. A vector of weight two in C,, is either the first row of (1), v = (1,1,0....,0), or
the sum of v with a row of A that starts with two ones. Since A is the incidence matrix of
a 3-(2%,4, 1) design that is also a 2-(2",4,2"! — 1) design, there arc cxactly 2"~! — 1 rows
of A that have ones in the first two positions. Any row of A is the incidence vector of an
affine plane in AG(n,2). According to our labeling of the coordinates of Cy,, the four nonzero
positions in a row R of A correspond to a quadruple of vectors x, y. z, t € GF(2)" such
that

r+y+z+1=0.
In particular, if the first two positions of R are nonzero, we have
r=0y=1, 2 t=z+1

The two nonzero positions of v=(1,1,0,...,0) arc labeled by 0 and 1. Consequently, the
nonzero positions of any other vector of weight two in C,, arc labeled by a pair of points in
AG(n,2) of the form {z,z + 1}, z # 0,1. Notec that any such pair is a translation of the
affine line {0,1} by the vector =:

{z, 2+ 1} ={0,1} + =.

Thus, the 2"~! vectors of weight two in C, are the incidence vectors of the affine line {0, 1}
and the 2"~! — 1 affine lines parallel to the line {0, 1}. 0

It follows from Lemma 2.2 that the intersection of the general affine group G A(n. 2) with
the automorphism group Aut(C,,) of C,, is the stabilizer of a class of parallel lines in AG(n, 2)
in GA(n,2). There are 2"~'(2" — 1) lines in AG(n, 2) that are partitioned into 2" — 1 parallel
classes. Since all parallel classes are in one orbit under the action of GA(n,2), we have the
following.

Lemma 2.3
[GA(n.2) N Awt(C)| = |GA(n.2)]/(2" = 1) = 2"(2" = 2)...(2" = 2"7).
We will need also the following result.

Lemma 2.4 The 2"~ parallcl lines being the supports of the weight two vectors in C,, con-
sidered as “points”, and the affine planes in AG(n,2) that contain lines from this parallel
class, considered as “blocks”, form a trivial 2-(2"7',2,1) design.

Proof. The line {0, 1} considered as a pair of affine points is contained in exactly 2! - 1
affine planes, each of the form

{0, 1, z, = +1}.
Thus, the line {0, 1} appears in exactly one affine plane with every parallel line {z, z + 1},
2 5 0,1. The fact that every other line that is parallel to {0. 1} also appears in 2"~! -1 affine
planes follows from the transitivity of the stabilizer of a class of parallel lines in GA(n, 2) on
the set of lines in the parallel class. m]
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3 Vectors of weight four in C,

The set of codewords of weiglt four in C,, consists of vectors of the following three types (i),
(i1), (iii):

(i) The rows of A that are the incidence vectors of the affine planes in AG(n,2). The
total number of such vectors is
b 21:(21) - 1)(21! —_ 2)

B 4-3-2

The design G with incidence matrix A is the unique (up to isomorphisim) 3-(2", 4, 1) design
of minimuin 2-rank equal to 2" — n — 1. This 3-design is a 2-design with

Ap =271,

and a 1-design with

(2:1 _ 1)(211-1 _ ])

3 .
There are exactly A = 2"7! — 1 rows of A that contain ones in the first two positions, and
exactly

/\|=

8(211—1 _ 1)(21:—2 _ 1)
3
rows of A with exactly one nonzero entry in the first two positions. The number of rows of
A that have zeros in the first two positions is
2:1(2:1 _ 1)(211 - 2) (211 - ])(211—I -

)
h— 2= - n-ll .
h — 21 + Ao T3 2 5 +(2 1) (3)

2(A = &) =

(ii) A set of \
n—1 n-y
2% — 2 = X 1 (@)
vectors obtained as the sun of the vector v=(1,1,0,...,0) with a row of A that has exactly
one nonzero entry in the first two positions.

(iii) Any vector that is the sum of v=(1,1,0,...,0) with a vector u of weight six in the
extended Hamming code H,) starting with two ones: « = (1,1,...). To count this set of
vectors, note that any such vector in H;) is obtained by extending a codeword of weight five
in the Hamming code H, of length 2" — 1, assuming that the added overall parity-check
position is the first position. The five nonzero positions of n other than the first position are
labeled by five nonzero points in AG(n,2), one being 1 = (1,0....,0), that sum up to the
zero vector 0 € GF(2)”. Equivalently, if 1, «, 8, 7,4 are these five points in AG(n,2), we
have

a+3+y+d6=1.
where a, /3,7, 4 are distinct from 0 and 1. The Hamming code H, contains a total of

(2 = 1)(2" = 2)(2" = 2)(2" — 2°)

5!
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vectors of weight five. Among those, there are exactly

n _ n _ 02 n _ 03
(2" -2)(2 4!2 )(2" - 2%) (5)

vectors with nonzero first position. Consequently, the number of vectors of weight four in
C, that are obtained as the sum of v=(1,1,0,...,0) with a vector of weight six in H, is
given by formula (5).

It is convenient to arrange the sct of codewords of weight four in C,, as in (6).

(A

T 0

A

1 0

0 1

e A

0 1

0 0
As

0 0 (6)

I 0

... B

1 0

0 1

... DB

0 1

0

. B

0 o )

The sub-matrices in (6) are defined as follows:
e The rows of (6) that involve Ag, A;, A2, A3 comprise the rows of A.

e Ay consists of the 2"~2(2"~! — 1) rows of A being the incidence vectors of the affine
planes that contain supports of vectors of weight two in C,, (Lemma 2.4).

e The rows that involve By, B, are vectors of weight four of type (ii).
e Each of the matrices A, A», By, By has

4(2n—l - l)(2n-2 _ 1)

/\|—1\2= 3

rows (see eq. (4)).
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e The rows involving B; are vectors of type (iii).
o Each of the matrices A; and Bj has

(271 - 2)(2:; — 22)(27! _ 21)
4!

rows (by egs. (5) and (3)).

Lemma 3.1 The incidence structure T with incidence matriz (6), having the 2" coordinate
indices of C, as points and the supports of codewords of weight four in C, as blocks, enjoys
the following properties:

{(a) Any triple of points that contains an affine line parallel to {0, 1}, i.e., @ pair of points
of the form {z,z + 1}, z € GF(2)", is contained in eractly one block of T whose incidence
vector is a row of Ag from eq. (6).

(b) Any triple of points thet does not contain any pair of points of the form {z,z + 1} is
contained in exactly two blocks of I, one being an affine plane with incidence vector a row
of the matriz (7),

{1 0

oA

1

0 1

e A |, )
0 1

0 0

e Ag

\0 0

and the second block has an incidence vector being a row of the matriz (8).

( 1 0 \
B
1
0 1
B |. (8)
0 1
0 0
B
\ 0 0

Proof. (a) Since all affine lines {z, z + 1} are in one orbit under the automorphism group
of Cy, it suffices to prove the statement for any triple 7 that contains the line {0,1}. Let
T = {0,1, u}. There is only one affine plane P that contains T, namely P={0,1,u,u + 1}.
The incideuce vector of P is a row of Ay by Lemnma 2.4. Since the rows of (7) are incidence
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vectors of affine planes that o not contain any affine line parallel to {0, 1}, T is not contained
in any block of Z with incidence vector being a row of (7). Finally, T is not contained in any
block of Z with incidence vector being a row of (8), for any such block does not contain at
least one of the points 0 and 1.

To prove (b), it is sufficient to show that every two blocks of I with incidence vectors
from (8) share at most two points (the rest follows by counting the total number of triples
covered by blocks with incidence vectors from Ag, (7), or (8) ). Note that the sub-matrix
(9) of matrix (8) is obtained by permuting the first two positions in a set of codewords of
weight four in the extended Hamming code H;;. The minimum Hamming distance of H;; is
four, thus any two rows of (9) can share at most two nonzero coordinates.

1 0
B
1 0
B,
0 1

The rows of the sub-matrix (10) of matrix (8) are obtained by adding the vector (1,1,0,...,0)
to vectors of weight six in H, that start with two ones. The Hamming distance between any
two vectors x = (1,1,...), y = (1,1,...), x #y, z,y € H., is at least four. Thus, if z and y
are hoth of weight six, they can share at most four nonzero coordinates. Cousequently. the
rows x +(1,1,0,...,0), ¥y + (1,1,0,...,0) of (10) that correspond to x and y, can share at
most two nonzero coordinates.

0 0
B; |. (10)
0 0
Finally, if  is a row of (9) aud y is a row of (10), then '’ = z + (1,1,...,0) is a vector
of weight four in H, and y' = y +(1,1,....0) is a vector of weight six in H;, and &’ and
¥’ share one nonzero coordinate in the first two positions. Thus, ', ' can share at most
two more nonzero coordiunates with indices greater than two. Consequently, # and y share
at most two nonzero coordinates. 0

4 SQS(2")’s in the code C,

The only codewords of weight four in C,, that contain supports of codewords of weight two
are rows of Ay (sec ¢q. (6)). By Lemma 2.4, the support of every codeword of weight two is
covered by exactly 2"~! — 1 rows of Ag. It follows that the incidence matrix of any SQS(2%),
or 3-(27,4,1) design D, whaose rows are codewords of weight four in C,,, must contain the
rows of Ag: for, the pair of points 0,1 that labels the first two code coordinates, as well

— 146 —



as every other pair that is the support of a weight two vector in C,, must be contained in
Ay = 2""1 —~ 1 blocks of D.

Consequently, the incidence matrix of D is obtained by replacing some set A’ of k rows
of the matrix (7) with an appropriate sct B’ of & rows of the matrix (8). Here “appropriate”
means that the sets A’, B’, considered as incidence vectors, cover exactly the same sets of
triples of points. We call any such pair A, B’ a matching pair.

We will describe explicitly a matching pair {A’, B'}, where A" and B’ each consists of
eight rows.

An affine plane P in AG(n,2) is either a 2-dimensional linear subspace of GF(2)" or a
coset of such subspace. Let

P={o,a+06.3+0,a+8+¢}={0,0,3.a+3}+06
for some vectors ¢, a, 3 € GF(2)" such that
a#£0,1, 3#0,1, a+3#£0.1. (11)

Starting with P, we construct seven more quadruples that are listed together with P in
Table 4.1.

Table 4.1

o)
@
e/
o
o+1
o+1
o+1

a+¢
a+o+1
a+o+1
a+¢
a+o+1
a+ ¢
a+o

3+0¢
B+o+1

B+d
B+o+1
B+¢+1

B+ad
B+o+1

a+3+¢
a+ 3+ ¢
a+3+0+1
a+8+o0+1
a+3+o+1
a+3+o+1
a+3+0

o+1|la+o+1| B+06 a+3+0

Under the assumptions {11), each of the eight quadruples in Table 4.1 consists of four
distinet affine poiuts, and shice the suin of the four clements in each quadruple is zero, the
eight quadruples constitute eight distinct affine planes. In addition, P, as well as each of the
remaining seven affine planes in Table 4.1, do not contain the affine line {0, 1} or any affine
line {2,z + 1} parallel to {0,1}. Thus, the incidence vectors of these cight affine planes are
vectors of weight four in C, being rows of matrix (7).

The eight quadruples in Table 4.1 are obtained by adding 1 to an even number (0, 2 or
4) elements of P. This collection of eight quadruples is closed under these operations: if
we start with any other of the eight rows of Table 4.1 instead of row one and repeat the
procedurc, we will end up with the same collection of eight guadruples. Consequently, if
we repeat this construction by starting with an affine plane P’ that is not any of the eight
quadruples in Table 4.1, we obtain a set of eight new quadruples disjoint from the set of
those obtained fromn P. Thus, the set of all

(2" — 1)(2" - 2)
132

2n(2n-1 _ 1)(21]—-2 - ])

_on-2 n—l_l =
222" - ) :
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affine planes that do not contain affine lines of the forin {z, z + 1}, i.e., the affine planes
whose incidence vectors are rows of matrix (7), is partitioned into 2°~3(2"-! - 1)(2"~2-1)/3
disjoint 8-sets, each consisting of eight affine planes as in Table 4.1.

Table 4.2 lists cight quadruples obtained by adding 1 to an odd number (one or three)
of points from P. Alternatively, Table 4.2 is obtained by adding 1 to the entries in the first
column of Table 4.1. The conditions (11) imply that each of the eight quadruples in Table
4.2 consists of four distinct affine points. The sum of the four vectors in every row of Table

42is 1.
Table 4.2

o+ ¢
a+¢+1
a+o+1
o+ ¢
a+¢+1
a+¢
a+¢
a+o+1

B+¢
B+o+1
B+o
B+o+1
B+o+1
B+¢
B+o+1

B+¢

a+B+9
a+8+¢
a+fB+o+1
a+p+¢o+1
a+fB+¢+1
a+B+¢+1
a+f+¢
at+B+¢

We will show that the cight quadruples in Table 4.2 are supports of codewords of C,
that correspond to rows of matrix (8). It is readily seen that if a quadruple from Table
4.2 contains 0, it can be obtained from an affine plane containing 1, by replacing 1 with
0. Similarly, any quadruple from Table 4.2 that contains 1 is obtained from an affine plane
containing 0, by replacing 0 with 1. Thus, any quadruple from Table 4.2 that contains either
0 or 1 is the support of a codeword from C, of type (ii).

If a quadruple from Table 4.2 does not contain either 0 or 1, then adjoining 0 and 1 to it
yields a set of six linearly dependent points of AG(n,2) that support a vector of weight six
in the extended Hamming code H having its first two coordinates equal to 1. Thus, any
quadruple from Table 4.2 that does not contain either 0 or 1 is the support of a codeword
from C,, of type (iii).

Let A’ be the matrix whose rows are the codewords from C, having as supports the eight
quadruples from Table 4.1, and let B’ be the matrix whose rows are the codewords from C,
having as supports the eight quadruples from Table 4.2. It is easy to check that the eight
quadruples listed in Table 4.2 cover the same set of 32 triples as the eight affine planes from
Table 4.1. Thus, {A’, B’} is a matching pair.

The partition of the set of rows of matrix (7) into disjoint 8-sets of rows whose supports
form a configuration as the one in Table 4.1, implies a partition of the set of rows of matrix
(8) into disjoint 8-sets of rows whose supports form a configuration as the one in Table 4.2.
Thus, the following is true.

Lemma 4.3 The sets of rows of each of the matrices (7) and (8) can be partitioned into

2n-3(2n—l - 1)(21:—2 _ l)
3
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groups of cight rows each, so that every group of eight rows of matriz (7) forms a matching
pair with exactly one group of cight rows of matrix (8).

Theorem 4.4 The code C,, contains eractly

2"_3(2"_1—1)(2"_2—])
3

(12)
distinct Steiner quadruple systems SQS(2").

Proof. By the arguments of the preceding paragraphs, all we have to do is find the total
number of distinct matching pairs.

If (A', B') and (A", B”) are two matching pairs such that A’'NA” =@, BN B" =0, then
(A'U A", B’ U B”) is also a matching pair. Thus, a number of (12) distinct matching pairs,
and hence distinct SQS(2")'s, are obtained by using the partition described in Lemma 4.3.

To show that (12) is the actual total number of all distinct matching pairs, we will express
this number as the number of solutions of a linear system of equations over the binary field
GF(2).

By Lemma 3.1, a triple of points (that is, a triple of the 27 code coordinates), is covered
either by one row of Ag, or one row of the matrix (7) plus one row of the matrix (8). Note
that each of the matrices (7) and (8) contains exactly

(2" — 1)(2" - 2)
4-3-2

_ 21:(211-1 _ l)(2n—2 - l)

- 2!1—‘2 2n—l -1

rows.
The 2°~2(2"1) rows of Ay cover 2"(2*~! — 1) triples of points. The number of the
remaining triples that are covered by rows of matrix (7) and matrix 8 is

gn e _ 2n+2(2n-l _ 1)(211—2 - 1)
(3)—2(2 -1)= 3 .

Let Al = (m;;) be the 2”2‘2"-';’)(2"_2") by 2"“(2"-'3”(2"-2'” (0, 1)-matrix with rows
indexed by the triples of points that are not covered by rows of Ay, and coluinns indexed by
the rows of matrices (7) and (8), where m;; = 1 if the ith triple is covered by the jth row,
and m;; = 0 otherwise. It follows from Lemma 3.1 that cvery row of M contains exactly two
entries equal to 1: one in a column of M indexed by a row of (7), and the second one in a
column of M indexed by a row of (8).

Using the partition from Lemma 4.3, we can rearrange the rows and columns of Af so
that Af becomes a block matrix with blocks of size 32 by 16, where the blocks along the
main diagonal correspond to matching pairs (A’, B’) as those defined by Table 4.1 and Table
4.2, aud all blocks off the main diagonal consist of zeros only. It follows that the rank of A/
is equal to the sum of the ranks of the blocks along the main diagonal. Every such block is
the incidence matrix of 32 3-subsets of a set of eight affine points versus 16 quadruples as
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those listed in Table 4.1 and Table 4.2, and its 2-rank is easily calculated to be 15. Thus,
the 2-rank of M is equal to

2::—3(2n—l _ ])(21:-2 _ 1)
3

Let us consider the following homogeneous system of linear equations over GF(2).

Mzt =0, (13)

ranko (M) =15- =5.2"%2" — )"t - 1).

where x = (), 2, ...) and the unknowns z; take values in {0,1}. Every nonzcro solution
of (13) is a (0, I)-vector of an even weight, say 2k, and the support of z is the union of
two disjoint subsets of size & that correspond to a matching pair (A’, B'), |A'| = |B'| = k.
The zero solution corresponds to the trivial matching pair A’ = B’ = §). Conversely, every
matching pair corresponds to a solution of (13). Consequently, the total number of matching
pairs is equal to the number of solutions of the system (13):

mtten-lonen-3.g -l pen-?oy
3 3

~ranka(M) _ 2

This completes the proof. m]

The number (12) includes SQS(2")'s of 2-rank 2" — n, as well as SQS(2")’s of 2-rank
2" —n — 1 that are isomorphic to the classical system of the planes in AG(n,2). The total
number of the latter is easily found by using Lemma 2.1 and Lemma 2.3:

Aat(Cl i
|GA(n,2) N Aut(C,)|
Thus we have the following.
Corollary 4.5 The code C,, contains a tolal of
b (14)

SQS(2")’s of 2-rank 2" — n — 1 being isomorphic lo the classical Steiner system of the planes
in AG(n, 2).

Corollary 4.6 The code C,, conlains a totel of

zn—.'l(zu<l —l)(2""7-1)
3

— 9%l (15)
SQS(2")’s of 2-rank 2° — n.

Now it is easy to find the total number of all distinct SQS(2")'s on a given set of 2 points
of 2-rank 2" — n, as the product of the number (15) of such systems that are containee in
the code C,, with the mumber (2")!/|Aut(C,)| of distinct codes that are equivalent to C,,.

Theorem 4.7 The total number of distinct SQS(2")’s of 2-rank 2" — n is

(2")'(2.2n—1|(2n—l;l)(211—2_1) _ 22"_1_")
22""l+n—l(2n—l - 1)(211-1 - 2) . (211—1 _ 21:-2)'

(16)
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5 A mass formula and bounds for SQS(2")’s of 2-rank
2" —n

If D is an SQS(2") of 2-rank 2" — n in the code C, with generator matrix (1), then C,
is the lincar span of the rows of the incidence matrix of D. Thus, every antomorphism
of D preserves C,,, and the total number of distinet SQS(2")’s of 2-rank 2° — n in C,
that are isomorphic to D is equal to |Aut(C,,)|/|Aut(D)|. Assume that the total number of
isomorphisin classes of SQS(2")’s of 2-rank 2" —n is s, and let Dy, ..., D, be representatives
of these isomorphism classes. Then the formula (15) implies that

_ 22""1—11 _ IAu,‘(Cﬂ)l
== Aut (D)

23— pen-?oy
3

(17)

The "mass” formula (17) can be used for classifying all SQS(2")’s of 2-rank 2" — n up to
isomorphism: one has to find sufficiently many pairwise non-isomorphic designs Dy, Da, ...
of the given rank so that equality holds in (17). We will apply this formula to classify all
SQS(16)’s of 2-rank 12 in the next section.

Formula (17) can be used also for deriving lower and upper bounds on the number of
isomorphism classes of SQS(2")’s of 2-rank 2" — n. [f U (resp. u) is an upper (resp. lower)
bound for the group orders [Aut(D;)|, that is,

u < |Aut(D;)| < U foralll <i<s,

then (17) implies that

22""‘(2"";1)(2"'2-1) _ 22"-|_" 22"“3’(2" ';l)(?"'2—12 _ 22,.—1_"
n<s< U.
| Aut(Ca)l . | Aut(Cy)|

In particular, the trivial lower bound |Aut(D;)| = 1 implies the following.

Theorem 5.1 The number of pairwise non-isomorphic Steiner quadruple systems SQS(2")
of 2-rank 2" — n is greater or equal to

21)—3@—1_”(211—2-|
E}

1 — 2'2""—:1

22" n-l(gn=l ) (2n-t — 2) (21 — 2n-2) "

Corollary 5.2 The number of non-isomorphic Steiner quadruple systems SQS(2") of 2-rank
2% — n grows czponentially with n.

6 Classification of SQS5(16)'s of 2-rank 12

There is only one (up to isomorphism) Steiner gquadruple system on eight points: the classical
system with blocks being the plancs in AG(3.2) whose 2-rank is 22 =3 — 1 = 4. Thus, there
are o SQS(8)’s of 2-rank 5, which is also confirmed by formulas (15) and (16).
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According to formula (15), the code Cy of an SQS(2!) of 2-rank 12 contains a total of
2" — 2% = 16,368

5QS5(2%)'s of 2-rank 12, and by formula (14), C; contains 2* = 16 “classical” SQS(2')’s of 2-
rank 11. Note that the total munber of all distinet SQS(16)’s of 2-rank 12 is 995,350,356,000
by formula (16).

It is relatively casy to generate the SQS(2')’s in C; by using the partition described in
Lemma 4.3. For each SQS(2') found in Cj, we computed the binary code C’ of length 140
and dimension 12 spanned by the point by block incidence matrix (C’ is called a point code
in [9]). According to the weight distribution of their point codes, the 16,368 SQS(16)’s in
C, were partitioned into 15 classes.

Table 6.1 lists data for representatives of the 15 classes such as the order of the auto-
morphism group |Aut|, orbit lengths of the automorphisim group on the 16 points, the total
number of codewords of the first three nonzero weights in C’, and the total number distinct
designs in Cy with the given weight distribution.

Table 6.1 SQS(16)'s of 2-rank 12

No. | |Aut| | # Distinct in Cy | Orbits | Weights

1 | 21504 16 16 | 35(16), 48(7), 56(128)

2 3072 112 16 16(1), 35(16), 43(16)

3 3072 112 16 | 32(3), 35(1G), 51(48)

4 1536 224 | 8.8 |8(1), 35(24), 43(8)

5 1536 224 | 8,8 |35(16), 40(3), 48(4)

6 768 448 | 4,12 | 24(1), 32(2), 35(20)

7 768 448 | 4,12 | 24(1), 35(16), 43(12)

8 768 448 16 | 32(2), 35(16), 40(4)

9 768 448 16 | 35(16), 40(4), 48(6)

10 256 1344 | 44,8 [ 16(1), 35(20), 40(2)

11 256 1344 | 838 | 24(1), 35(16), 40(2)

12 256 1344 | 4,4,8 | 32(1), 35(16G), 40(2)

13 128 2688 | 8,8 |32(2), 35(16) 40(2)

14 96 3584 | 2,2,6,6 | 24(1), 32(1), 35(18)

15 96 3584 | 2,2,6,6 | 32(1), 35(16), 40(3)
The order of the automorphism group of C; is 344064 by Lemna 2.1. Since

21 — 21 = 16368 = 344064( ! + 2 + 2 +i+i ! +2)

21504 ' 3072 ' 1536 = 768 256 128
it follows from the “mass” formula (17) that these 15 non-isomorphic SQS(2*)'s represent
all isomorphism classes. Thus, we have the following.

Theorem 6.2 There are ezactly 15 isomorphism classes of SQS(16) s of 2-rank 12.

Base blocks and generators of the automorphism group for these 15 SQS(16)’s are avail-
able from the author at
littp:/ /www.math.mtu.edu/~tonchev/sqs16r12.html.
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On Hadamard Matrices of Order 2(p + 1) with an
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Abstract
In this paper, we investigate Hadamard matrices of order 2(p + 1) with an automorphism of odd

prime order p. In particular, the classification of such Hadamard matrices for the cases p = 19 and
23 is given. Self-dual codes related to such Hadamard matrices are also investigated.

1 Introduction

A Hadamard matrix H of order n is an n x n matrix whose entries are from {1, —1} snch that HH' = n{
where H! is the transpose of H and [ is the identity matrix. It is kuown that the order n is necessarily
1,2, or a multiple of 4. Two Hadnmard matrices H and K are snid to be equivalent if there exist
(1, —1,0)-monomial matrices A, B with X' = AHB. An antomorphism of a Hadamard matrix 7 is an
equivalence of H to itself. The set of all automorphisms of H forms a group under composition called
the antomnorphisin group of H denoted in this paper by Aut(H).

All Hadamard matrices of orders up to 28 have been classified (cf. [3] and [13])). In this paper. we
investignte Hadamard matrices of order 2(p+ 1) with an automorphism of odd prime order p (p = 19, 23).

We also investigate self-dual codes of length 40 over F5 generated by our Hadamard matrices of
order 40, and self-dual codes of length 48 over Fy generated by cur Hadamard matrices of order 48. We
relate the binary extremal donbly-even self-dual [40, 20, 8] codes obtained from our Hadamard designs
to Yorgov's classification [16].

2 Hadamard 2-(2p+1, p, (p—1)/2) Designs with an Automorphism
of Order p

Let p > 3 be an odd prime. If a Hadamard matrix H of order 2p + 2 has an automorphism of order p,
then H is constructed from a symmetric 2-(2p + 1, p, (p — 1)/2) design with an automorphism of order
p with one fixed point. This follows from a well-known connection between Hadamard matrices and
syimetric designs, together with a bound on the number of fixed points [4, p. 82].

Let D be a symmetric 2-(2p + 1, p, (p — 1)/2) design with an antomorphism of order p. Then, as in
Touchev [14, 15], D has an incilence matrix of the form

) T
M N :
1
A=AWMNP.Q)= 0
P J-Q
0
11 0---0 0 |

* Department of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
tDepartiment of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan
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where J is the all-one matrix of order p, A, N, P, Q arc circulant matrices satisfying

M.I=NJ=PJ=QJ=”—;—I.I. m

For circulant matrices M, N, P, Q satisfving (1), the matrix A is an incidence matrix of a symmetric
2-(2p+ 1,p, (p — 1)/2) design if and only if the following eqnalities hold:

Mart e NNt =2 ey )
PP +QQ = P—~2t—11+¥.l 3)
MAI' + PP' = #I + p—;—:’.l )
NN' 4 QQ' = %1 + %’J (5)
AP = NQ. (6)

The equalities (1) and (2) mean that the matrix [M N]is an incidence matrix of a 2-(p. (p—1)/2.(p-3)/2)
design. Tonchev [14. 15] used this fact to classify all 2-(2p+ 1. p. (p—1)/2) designs with an automorphism
of order p for p = 13.17. In this paper, we carry out a similar classilication for p = 19.23. However,

there is an important difference between his case and onr case. 1f p = =1 (mod 1), then (p - 3)/2 is
even, and there exists a 2-(p, (p — 1)/2, (p — 3)/4) design. Such a design can be coustrncted as the Paley
difference set consisting of the quadratic residues modulo p. So, if p = -1 (mod 4). then we have a

special case which does not ocenr when p =1 (inod 4), namely, the case where one of M N, P.Q is an
incidence matrix of a 2-(p. (p — 1)/2. (p — 3)/4) design. It follows from the equalities (2)-(5) that. if one
of the four matrices M. N. P.Q is an incidence matrix of a 2-(p. (p — 1)/2. (p — 3)/4) design, then so are
the other three.

Let Z be the p x p cirenlant matrix with first row (0,1,0.0,....0). Then

ANMN.P,Q)= AMZ,NZ.P.Q) (N
= AM.N.P2,QZ) (8)
= AMZ,N,PZ.Q) 9)
= A(M,NZ.P,QZ). (10)

where A 2 B means that the designs defined by A and B arc isomorphic, or equivalently, there exist
permutation matrices T}, T3 such that 71 AT, = B.

For convenience, we take Z/pZ as the row and the column indices of a matrix of order p. Let a bea
primitive root modulo p, and let Y be the matrix whose (i, j) entry is ;. Then

ytzy = z° (11)

holds, so that Y'A/Y is a circulant (0, 1)-matrix whenever M is a circulant (0, 1)-matrix. Clearly, we
have

A(MN,P.Q)= A(Y'MY,Y!NY.Y'PY,Y'QY). (12)
Since a is a primitive root modulo p, we have, by putting 7' = Y{r-1/2
T'ZT = Z'. (13)
In particular, from (12) we find
AM N, P.Q) = A(M',N'. I, Q"). (14)

It is known that every Hadamard 2-(4¢ + 3,2t + 1, t) design is extendable in exactly one way (up to
isomorphism) to a Hadamard 3-(1¢ + 4,2 + 2,1) design. Suppose that A(M, N, P, Q) satisfies (1)-(6).

— 155 —



Define A* = A*(M, N, P,Q) by

1 0
M N P J=-M J-N :
1
A = 0 ol
P J-Q : J-P Q :
0 1
11 0--:0 0 0Q---0 1---1 1
11 1---1 1 0---0 0---0 0

Then A* is an incidence matrix of the Hadamard 3-(2(p + 1), p+ 1, (p — 1)/2) design extended from the
2-design with incidence matrix A(A, N, P,Q). One checks easily that

A*(M,N,P,Q) = A*(P,Q. Al N). (15)
Define B = B(AM, N, P,Q) and H = H(M, N, P,Q) by

[1 1---1 1.--1 17
1 1

M N
1 1

B=(B;)= ol

i P J-Q
1 0
1 1---1 0---0 0

H = (Hyj) = (-1)%).
Then H is & Hadamard matrix of order 2(p + 1). One checks casily that
H(M,N,P,Q) = H(P,Q, M, N). (16)

Here “2" means the equivalence of Hadamard matrices.

For the remainder of this section, we assmne p = 19 or 23, and we shall deal with the special case
where cach of M, N, P,Q is an incidence matrix of a eyclic 2-(p, (p — 1)/2, (p — 3)/4) design. For p =19
or 23, it is known that the only cyclic (p, (p — 1)/2,(p — 3)/4) difference set {up to equivalence) is the
one constructed from the quadratic residues madulo p [5], so that we have

MN.PQe{MZ |0<i<plU(MZ'|0<i<p), (17)

where Ay is the circulant matrix in which the support of the first row consists of the nonzero quadratic
residues modulo p. We will show in this special circumstance that, there are exactly three Hadamard
2-(2p + 1,p.(p — 1)/2) designs up to cequivalence. By (7) and (14), we may assume without loss of
gencrality that A/ = M. By (10), we can also retake N up to multiplication by Z, so we may assutne
either N = My, or N = M{. By (8), we can also retake P up to multiplication by Z. Observe that Q is
uniquely determined by M, N, P by (6). Thercfore,

A(M.N,P,Q) = A(Mo, Mo, Mg, M) or, (18)
= A(Mo, My, ME, ME) o, (19)
= A(Ao, M, Mo, M§) o, (20)
2 A(Mo, ME, AL Q), (21)

where, in the last case,

Q = (ML
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Note

p.—l
J="—

“lﬂ 2 .

agt=P=3,, pt1

My = 3 J+ 1

Mo+ ML +1=J.

1,

Elimiuating M, we find
; 1
MZ+ Mo = %(J - 1.

Multiplying both sides by A", we find

_ 4
(J- DALy = oF l(Mo +1).

Now

Q= (Mlll)gMo—l
= M{(J — I — Mo)M;!

4
- ALt -
= My Mo+ 1)~ 1)
p-3 p=3. .,
p+1 + pr1.0

is apparently not a (0, 1)-matrix. Alternatively, oue can argue as follows. The matrix (M§)2M;" has
an eigenvalue 8 = &@/a, where a is a root of the quadratic equation a2 + a + (p + 1)/4 = 0. One can
check easily that # is not an algebraic integer, hence not an eigenvalue of a (0, 1)-matrix. Thus @ is not
a (0, 1)-matrix. Therefore, (21) is impossible.

The three 2-designs we obtain from (18)-(20) arc denoted by Sap40.1, S2p41.2 and S2pi) 3, respee-
tively. We denote by E(D), H(D) the Hadatmurd 3-design, the Hadamard matrix, respectively, obtained
from the Hadamard 2-design D. For p = 19 and p = 23, we have verified by computer that the three 2-
designs Sap41.i (£ =1,2,3) are pairwise non-isomorphic, that the three 3-designs E(S2p41,i) (i = 1,2,3)
are pairwise non-isomorphic, and that the three Hadamard matrices H(S3p+1.:) (i = 1,2,3) are pairwise
inegqnivalent. The orders of the automorphism groups of the Hadamard designs and matrices are listed
in Table 1. In the next sections, we consider the geuneric case where none of M, N, P,Q is an incidence
matrix of a 2-(p, (p — 1)/2,(p — 3)/4) design for p =19 and p = 23.

Table 1: The orders of the antomorphism gronps for the special cases

JAut(Szp41 il | 1Aut(E(S2p1,6)M | [Aut(H(S2p+1,4))l
p=19 171 342 27360
p=23 253 506 48676

We reminrk that the above argument can be generalized to an arbitrary prime p as long as a cyclic
(p, (p—1)/2, (p—3)/4) difference set is nique np to equivalence. Under this condition, we see that there
are at most three Hadamard 2-(2p + 1, p, (p — 1)/2) designs up to equivalence, with the property that
cach of the matrices M. N, P,Q is an incidence matrix of a cyclic 2-(p. (p — 1)/2. (p - 3)/4) design.

3 The Case p=19

In this section, we give the classification of Hadamard matrices of order 40 with an automorphism of
order 19. If p is an odd prime dividing the order of the automorphisit group of a Hadamard watrix of
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order n, then cither p divides n or n — 1, or p < n/2 ~ 1 [14]. Hence the largest prime which can divide
the order of the automorphisin group of a Hadamard matrix of order 40 is 19.

As the first step, we classify symmetric 2-(39, 19.9) designs with an automorphism of order 19. Using
this classilication, Hadamard 3-(40,20.9) designs with an automorphism of order 19 and Hadamard
matrices of order 40 with an automorphism of order 19 are classified.

In order to classify such 2-designs, we need all circulant matrices AL, N, P and Q satisfying the
couditions (1)-(6). First we tabulate all solutions to the system of cqnations:

y+ | -3
ptl, p-3

MM+ NN = B = (22)
MJ=NJ= %J (23)

under the additional condition 1 3
MAL £ ”Tl + 2 . (24)

In order to give the list of solutions in a compau:t maunuer, we idemtify a circulamt matrix Zf’;o' A
(a; = D or 1) with the set {i € Z/pZ | a; = 1}. If M,N C Z/pZ arc subsets whose corresponding
circulant matrices give a solntion to (22) ("3) then so is the pair aM + b.aN + b, where a.b € Z/pZ,
a # 0. In other words, the set of solutions to (22) (23) is invariant under the affine transforination
o—ar+bof Z/pZ. We thus list the solutions up to alline transformation only. Under the condition
(24), there are exactly 15 solutions {AM, N'} to (22)-(23) up to alfine transforination, given below,

{.'\1|,4‘12}.{1\1|,;\13}.{i\[l.ﬁlé},{.‘\1.|.A‘1(,}.{i\h.."[é}.
{1‘1| 1‘[(;} {v\l.( Alé} {1‘17 ;"In} {AIT.I‘I’} {1‘19 1\1")}
{AIJ 1\110} {1\1“,1\“2} {1\1” A[ 2} {1‘1”,.‘114} {1‘113 1\1“}

where M; (i = 1,...,14) are listed in Table 2. We note the omission of {Af;, M4} due to the property
My = Mj.

Table 2: M, M, ..., A\ (p=19)

[ M, [ M;

1 [ {0.1.2,5,6,8.11,13,15} 8 [ {0.1,2,4.7,11,13,15,16}
2 | {0.3.7,8,9,10,11,12,16} 9 | {0.1.2.3.4,6,8.12,15}
3 {1.8.9,11.12,15,16, 17,18} | 10 | {0.1,2.5,6.9,11,12, 14}
4] {0.1.2.3.4,7,12, 14,15} 11 | {0.1,2,3,4.6.10, 14,15}
5| {0.1.2.4.6,7.10, 12,16} 12 | {0,1,2,:4.8,11,13,14,16}
6 | {0.1.2,4.6,10,13,15, 16} 13 | {0,1.2.3.4.6.8.11.15}

7] {0.1,2,3.4,6,9.13, 14} 14 | {0.1.2.5,7,10,11,13. 14}

If {A, N} is a solntion to (22)-(23), then

(M,N,P,Q) = (M,N,N*, M"), (M, NLNCAMY,
(N, M MU NN, MO MONY
arc also solutions to (1)-(6). 1f D is the design with incidence matrix A(M, N, Nt, M), then we denote

by D!, D' the designs with incidence matrices A(M, N*, N, M), A(N, M, M, N*), respectively. The
notation conforms with the equivalence

AM NN MY =AM NN M) = A(M N, N ALY

which implies that D' is isomorphic to the dual design of D. We note that D" has incidence matrix
AN MU ALNY),

For each i = 1.2.....8, we define Dag; to be the design with incidence matrix A(M. N, N'. A1),
where (AL N) is given in Table 3. Then we also have designs DY, ,. Dh,, and D'5g ;. Altogether we have
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32 designs. However, since My = MY, we sce Dyg1 = Dig; and Dl & D'yy ;. Our computer search
revealed that the 30 designs Dygy, Digy, Dagiy Dig ;o Dl ;o nnd D’Qg_,. (i = 2,...,8) form a complete
set of representatives for isomorphism classes of designs obtained by solutions to (1)-(6), under the
additional condition (24). Moreover. none of these 30 designs is isomorphic to Sz, (i = 1.2, 3), since
their automorphism groups are different (see Table 4).

Table 3: Dag.1.Dyo2,.... Dag s

Designs (M. N)
Dag, (M, M2)
Dy 2 (M, M)
D39y (Al AMy)
D394 (Ma, Mg)
D3y 5 (M7, M)
Do 6 (Ms, M)
D3z | (M, Mhg)
Dagx | (Mg, Mis)

Table 4: | Aut(Dyo,:)| and | Aut{Djy ;)|

i [Aut(D3e.) | | t\ut(D:'wJ)[
1.2,5,6,7.8 19 19
3,4 57 57

Now let H(D) be the Hadamard matrix defined by a design D described above. Then (16) implies
(D) = H(D'). We have verified that H(Dgo)), H(D39;) (2 < i € 8), H(D}y,;) (2 € i < 8) and
H(S3.:) (1 = 1,2,3) are inequivalent.

Similarly, let £(D) be the Hadamard 3-(40, 20, 9) design defined by a design D described above. Then
(15) implies E(D) = E(D’). We have verified that E(Dge 1), E(Dzg) (2<i <8). E(D}y;)(2<i<8)
and E(S3g,) (i = 1.2.3) are non-isomorphic. In other words. there is a one-to-one correspondence
between isomorphisim classes of 3-designs and equivalence classes of Hadamard matrices.

Theorem 1. There are ezactly 33 inequivalent 2-(39,19,9) designs with en automorphism of erder 19,
There are exaclly 18 inequivalent Hadamard matrices of order 40 with an anlomorphism of order 19.

The relationship among the orders of the automorphism groups of the Hadamard 2-designs D, the
Hadamard 3-designs £(D) and Hadamard matrices H(D) is listed in Table 5.

Table 5: The orders of the antomorphisi groups (p = 19)

TAWUD) | TAuE(DN] | TAWGI)]
i

19 70
57 57 228
171 342 27360

It is known (9] that the code Cs( H) over Fy, generated by thie rows of a Hadamard matrix H of order
40 is self-dual. We have computed the minimmum weights of the 18 codes from the above 18 inequivalent
Hadamard matrices of order 40 with an automorphism of order 19. and ouly C5(H(S39.2)) bas minimum
weight 13 and the others have mininmm weights less than 13. Note that the largest minimum weight
among known [40, 20] codes is 13 and Qg constructed in [9, p. 186] is the only known [40, 20, 13] code
(cf. [2]). The code Q) has gencrator matrix [ I, Bag | where Bag is the 20 x 20 conference matrix of
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the Paley type. An argument similar to [12, Theorem 4.2] shows that @) is gencrated by the following

Hadamard matrix:
I + By I+ By
I - ng I+ BQU

which is easily seen to be equivalent to the Hadamard matrix H(Ss9.2) (cf. Section 2). Hence Cs(H(S39.2))
is equivalent to QY.
Let A be an incidence matrix of a Hadamard 2-(39,19,9) design D and let C(D) be the binary code
with generator matrix
1

A :
1

By [6, Theorem 17.3.1], C(D) is self-dual. In uddition, C(D) is a doubly-cven code. Since C(D) contains
the all-one’s vector, C(D) is equivalent to the binary code generated by the columns of the incidence
matrix of the Hadamard 3-design E(D'). Let D\ and D, be Hadamard 2-(39, 19, 9) designs. If Hadamard
3-designs E(D{) and E(D}) are isomorphic then C(D;) and C(D;) are cquivalent.

Here we investigate the 18 codes corresponding to the 18 equivalence classes of Hadamard 3-designs.
We have verified that the two codes C(Sag,1) and C(Szp.2) have mininnmn weight 4 and the other 16
codes are extremal, that is, their mininnnn weights are 8. Yorgov [16] showed that there are exactly
three inequivalent extremal doubly-even self-dual [40,20, 8] codes with an automorphisin of order 19.
The three codes By, B2 and Bj; are distinguished by the orders of the automorphism groups, namely,
38,114 and 6840, respectively. The relation between the three codes By, Bs, Bz and onr 16 extremal
codes is listed in Tuble 6.

Table 6: Extremal doubly-even self-dual codes of length 40

Yorgov's codes Our extremal codes
C(D30,1), C(Dag,2), C(Dap,g), C(Dao,7)
3y C(Dgon), C(Dy 5), C(Dig 5), (DY, 6)
C(Djg 4), C(Dfo )
[ C(D39.3), C(Ds9,4), C(Dap.5), C(Dyg 4)
33 C(Dyg 3), C{Sa9,3)

4 The Case p =23

As done in the previous section, in this section, we give the following classification:

Theorem 2. There are exactly 109 non-isomorphic Hadarmnard 2-(47,23,11) designs with an automor-
phism of order 23. There are exactly 56 inequivalent Hadamard matrices of order 48 with an automor-
phisin of order 23.

The approach nsed in the classification is similar to that given in the previous section, so in this
scetion, only results are given. When p = 23, under the condition (24), there are exactly 53 solutions
{AM, N} to (22)-(23) up to affine transformation, given below,

(M, ALY, (M, MY (M MY, (AN MY { M, ALY, { My, AL},

{ My, Mg}, {Ma, MEY, { My, Mg}, { My, Mg}, { Mz, Mo}, { My, M},

{Mo, My}, {Moi, Maigr}, {Mai, Mbi, ) (i =6,...,25)
where Af; (i = 1,...,51) are listed in Table 7. \We note the omission of { Mg, M{,} due to the property
A‘[n = l‘[{l.

For each i = 1,2,...,27, we define Dyr; to be the design with incidence matrix A(M, N, Nt A%,
where (M, N) is given in Table 8. The designs Di;;, Dj;; and D'i;, are also defined. Among the
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Table 7: M, ALy, ...,

M (p=23)

7 Y7 7 A,
T [ {0,1,2,4,5,10,11,13,18,10,21} | 27 | {0,1,2.4,5,7.9, 11, 12, 15, I8}
2 | {0,1,2,3.4,7,8,11,13,15,20} 28 | {0,1,2,3,4,6,8.9,12,13,17}

3 | {0,2,3.4,5,7.10,11,14,15,21} 29 | {0,1,2,4,7,9,13,14,16,17, 19}
4 | {0,1,2.4,6,7,11,13,15, 16,19} 30 | {0,1,2,3,4.6,8,11.14,18,20)
5 | {0,1,2,3,4,7,8,15,17,18,20} 31 | {0,1,2,4,10,11,12,15,16,17,20)
6 | {1,6,8,9,11,12,15,16,17,18,19} | 32 | {0,1,2,3.4,5,7,11,12,17,19}
7 | {0,1,2,3,5,10,11,13,16,19,20} | 33 | {0,1,2.4,5,9,11,14,15,17,20}
8 | {0,1,2,3,4,7,8.10,12,14, 19} 34 | {0,1,2,3,4,6,7,10,11,15,17}
9 | {0,2,3,9,10,14,16,18,20,21,22} | 35 | {0,1,2,4,8,11,13,14,16, 18, 19}
10 | {0,1,2,3.5,7,12,13, 16, 19,20} a6 | {0,1,2,3,4,6,7,11,16,17,19)
1 | {0.3,5,9,10,11,12,13,14,18,20} | 37 | {0,1,2.4,6,9,10,12,13, 18,20}
12 | {0.1.2.3,4,5,7.9, 14, 15, 19} 38 | {0,1,2.3,4.6,8,11,12,18,20)
13 | {0,1,2,4,7.8,11,14,16,17,19} 39 | {0,1,2.4,7,10,11,12,14,19,20}
14 | {0,1,2,3,4,6,8,9,12, 13, 16} 40 | {0,1,2,3,5,6,7,10,14,16,17)
15 | {0,1,2,4.6,10,11,13,16,18,18} | 41 | {0,1,2,4,6,8,9,14,17,19,20)
16 | {0,1,2,3,4,5,8,10,13, 17,20} 42 | {0,1,2,3,4,5,8,9,13,15,19}

17 | {0,1,2,4,6,10,11,12,15,16,18} | 43 | {0,1,2,4,9,11,12, 14,17, 18,20}
18 | {0.1,2,3.4,6,8,11,12,15,18} 44 | {0,1,2,3,4,6.9.10,11, 14,16}
19 | {0,1,2,3,5,8,9,10,13,15,19} 45 | {0,1,3,4,6,7,10,12, 14,18,19}
20 | {0,1,2,3,5,6,8,12, 14, 16,19} 46 | {0,1,2,3,4,5.8,10,15,18,19)
21 | {0,1,2,3,5,11,12,15,18,19,20} | 47 | {0,1,3,4,6,7,11,13,15,17, 18}
22 | {0,1,2,3,4,7,8,11,13,16,17} 48 | {0,1,2,3,4,6,7,12,14,17,21}
23 | {0,1.2,3.5,8,13,15,17, 19, 20} 19 | {0,1,2,5,6,8,9,13,15,17,18}
24 | {0,1.2,3,4,5,7,11,13,16,20) 50 | {0,1,2,3,4,5,8.11.14,18,19}
25 | {0,1,2,3.6,8,11,12,16,17, 19} 51 | {0,1,2,4,6,8,13,15,16,18, 19}
26 | {0,1,2,3,4,6,8,11,12, 16,17}

Table 8: D47_|, D47‘2, cany D47,27
Designs (M,N)
Daza (M, Ma)
Dy72 (M1, M3)
Dar.s (M3, Mg)
Dsr5 (Af7, Mlg)
Dy 6 (Af7, Mg)
Dyzi (i=7,....27) | (Mai_q, Mai-3)
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108 designs, we see Dyz 7 & Di; ; and D ; = D""‘7 since M)y, = M{,. Our computer search revealed
that the 106 designs Daz.7. Dl 7. Daz.is Dig ;. DYz o and D'y (i = 1,...,6,8,...,27) form a complete
sct of representatives for isomorphism classes of designs obtained by solutions to (1)-(6), under the
ndditional condition (24). Morcover, nonc of these 106 designs is isomorphic to Sy7; (i = 1,2,3), since
their automorphisin groups are different (see Table 9).

Table 9: | Aut(D,yz,;)| and | Ant(Dg ;)

i JAut(Dyz: ) | | Aut{Dj; )|
7 1081 1081
1,...,6,8,...,27 23 23
We have verificd that the Hadamard matrices H(Dyz 7)., H(Dyz;:) (i=1....,6.8..... 27), H(DS; )

(i=1,...,6,8,...,27) and H(Sy;,) (i = 1,2,3) are inequivalent. We remark that H(D,+ 7) is equivalent
to the Hadamard matrix of the Paley type, since H(Dyz77) is the only Hadamard matrix with an
automorphism of order 47 among those we classified. As for Hadamard 3-designs, we have verified that
E(Dysz17), E(Dyz7) (i = 1,....6.8,...,27), E(DS;,) (i =1,...,6.8,....27) and E(S,7,i) (i = 1,2.3)
are inequivalent. In other words, there is a one-to-one correspondence between isomorphism classes of
3-designs and equivalence classes of Hadamard matrices. Therefore the number of designs and Hadmnard
matrices are as claimed in Theorem 2. The relationship among the orders of the antomorphism groups
of the Hadamard 2-designs D, the Hadamard 3-designs E(D) and Hadamard matrices H(D) is listed in
Table 10.

Table 10: The orders of the antomorphisin groups (p = 23)

TAUL(DY] ] VAGLBUN | 1A (DY]
23 23 92

1081 1081 103776
253 506 18576

The ternary code C3(H) generated by the rows of 8 Hadamard matrix H of order 48 is self-dual (cf.
[11]). We have verified that, among the 56 codes obtained from the Hadamard matrices we classified,
only C3(H(Dyz,7)) und C3(H(Syz2)) are extremal, that is, their minimun weights are 15. On the
other hand, only two inequivalent extremal self-dual codes of length 48 are currently known, namely,
the extended quadratic residue code Qug and the Pless symmetry code Pyg. Note that the two codes
are generated by Hadamard matrices of order 48 [11]. As mentioned above, H(Dy; 7) is equivalent to
the Hadamard matrix of the Paley type, so C3(H(D,z7)) is cquivalent to Qus. In [12, Theorem 4.2],
a Hadamard matrix Hyg of order 48 gencrating the code Pyg is given. As in the ense of the code QY
discussed at the end of Section 3. it can be readily seen that the Hadannrd matrix H,g is equivalent to
the Hadamard matrix H(Sy7.2). Hence C3(H(Sy7,2)) is equivalent to Pyy.

Table 11: Doubly-even codes of length 48

dim(C) | d(C) Codes ¢

24 12 | C(Daz1.7), C(Dur9), C(Dar.21), C(Da7,23)
C(Dyz 24)s C(Daz,27), CDS; 5). C(DY; )
C(Diz 9), C(Dj7.10). CDGz 1), C(Di746)
C(Diz.18): C(Diz 1) CDi7 25), C(DS: 27)

13 16 C(Ss7.1)
24 4 C(Sa7.2)
21 8 the other 38 codes
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By an argnment similar to the end part of the previous scetion. we now cousider binary codes C(D)
obtained from incidence matrices of the above symmetric 2-(17,23, 11) designs D with an automorphisim
of order 23. Note that the binary codes C(12) are doubly-even self-orthogonal codes, but these are not
necessarily self-dual. Recall that the codes C(D)) and C(D3) from 2-designs Dy and D» are equivalent
if the 3-designs E(D{) and E(Dj) are isomorphic. Hence we only consider the 56 codes corresponding
to the 56 equivalence classes of Hadamard 3-designs. The dimensions din{C') and the minimnm weights
d(C) of the codes are listed in Table 11.

It is known [7] that any extremal doubly-cven self-dual [48,24, 12] code with an automorphism of
order 23 is cquivalent to the extended quadratic residue code QRsy of length 48. Henee the extremal
doubly-even sclf-dual codes in the table nmst be equivalent to QRus. H(Si7,) is a [18,13,16] code
with weight enumerator 1 + 759¢'% + 6672y + 75942 + ™. Note that the largest minimum weight
among known [48,13] codes is 16 [2]. The binary code generated by the binary Paley type normalized
Hadamard matrix of order 24, that is, (/1 + .J}/2 where H is the Paley type normalized Hadamard
matrix, is equivalent to the binary Golay |24, 12, 8] code Gy [1, Table 7.1]. From the form of H(Sa7.1)
or Sg7.1, the code C(S47.,) is equivalent to the code with generator matrix

M M
1---1 0---0

where Al is a generator matrix of Gay.
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GEOMETRIC ASPECTS OF LARGE DEVIATIONS
FOR RANDOM WALKS ON A CRYSTAL LATTICE

MOTOKO KOTANI

1. THE GROMOV-HAUSDORFF LIMITS OF CRYSTAL LATTICES

The purpose of this talk is to discuss relations among certain convex
polyhedra appearing in various situations; Gromov-Hausdorff limits of
crystal lattices, homological directions of infinite paths in finite graphs
and the large deviation property (LDP) of random walks on crystal
lattices.

Consider the square lattice Z2 as a metric space with the graph-
distance d, with d(x,y) being the length a shortest path joining the
vertices z,y. Now we change the scaling. Namely, given a positive
constant ¢, we consider the metric space (Z?2, ed) homothetic to (Z2, d).
By letting € tend to zero, we find lim,o(Z?,ed) to be the euclidean
2-space R? with the Manhattan distance d,,

di((z1, 1), (T2,32)) = |21 — To| + |11 — |-

What will happen with a more general infinite graph with period-
icity? The graph we consider is a crystal lattices, which is defined to
be an abelian covering graph of a finite graph. The square lattice, the
triangular lattice and the hexagonal lattice are the typical examples.
Theorem 1. Let (X,d) be a crystal lattice with the graph-distance.

(1) (a special case of Gromov’s result [2]) There exists a normed linear
space (L, || - ||} of finite dimension such that

lilrg(X, ed) = (L,d)),

where di(x,y) =[x — y||.
(2) The unit ball D = {x € L | ||x|| £ 1} is a polyhedron. Thus the
norm || - || is not Fuclidean.

As a corollary, we establish a precise asymptotic for the number of
vertices in a crystal lattice.

Icollaboration with T. Sunada
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Corollary 2.
#{z € X | d(zo,z) < n} ~ (#Xo) vol(D)n* (n — o),

where vol(D) is the volume of D with respect to the Lebesque measure
on T Q@ R such that vol(T® R/ T Q Z) = 1.

Example 1. For the hezagonal lattice, L = R* and D is the heragon
(including the intenior) in R2,

We shall sec that the convex polyhedron we captured in Theorem 1
is somehow related with a long time asymptotic of a random walk on
a crystal lattice.

2. HOMOLOGICAL DRIFTING OF RANDOM WALKS ON FINITE GRAPHS

Before going further, let us give a simple observation on a random
walk on finite graphs. Let X, be a finite connected graph, possibly
with multiple edges and loop edges. We denote the set of all oriented
edges in Xy by Ey. An oriented edge is an edge with the origin and
terminus assigned, which are denoted by o(e) and t(e), respectively,
and the reverse edge by €. A decomposition Ey = Ef U E; with
E; ={¢| e € Ef} is called an orientation of Xj.

We shall consider a random walk on X given by a transition proba-
bility p, i.e. a positive valued function p : Ey — R satisfying

Z ple) =1 (z € Xo),
c€Ey,r
where Ey, = {¢ € Ey | o(e) = =}. Note that we don’t assume symme-
try for p.
An infinite path ¢ in Xj is a collection of edges ¢ = (e, eq,...) with
t(e;) = o(eiyr) fori=1,2,....

Theorem 3. (1) There exisits a 1-chain v, € Cy(Xo,R) such that

1
lim —(ei(c) + - +en(c)) =7 ae c=(ee...).
n—oo 711

(2) Ov, = 0, where @ : C1(Xo,R) — Co(Xo,R) is the boundary map.
Thus it defines an element vy, in the first homology group H (X, R).

The proof relies on the Birkhoff’s ergodicity.

What are the possible values of v, when p runs over all transition
probabilities. To give an answer, by choosing an orientation Ef C Ej,
define the {!-norm on H;(Xy, R) by

I Z acel|; = Z |te-

ecEy eeEg
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It is obvious that | - ||; does not depend on the choice of Ej .
Theorem 4. Let
Dy = {p € Hi(Xo,R) | p is a transition propbability on Xo}.
Then it is the unit ball with respect to the || - ||-norm. That is
Do = {a € Hi(Xo,R) | [laf < 1}.

In particular, Dy is a convez polyhedron in Hy(X,, R), syminetric around
the origin.

What we find about combinatorial properties of Dy are the following.

Theorem 5. 1. Dy is “rational” in the sense that all extreme points
of Do are in Hi(Xo, Q).

2. a € H\(Xy,Q) is a vertex of Dy if and only if a = ¢/||c||, for a
circuit (simple closed path) ¢ in X,.

3. A face of the highest dimension corresponds to an orientation Ef
of Xo which is strongly connected. A face of lower dimensions cor-
responds to an oriented subgraph contained in a strongly connected
orientation (with a compartible orientation).

4. Let Fy and F; be faces of Dy and Xp, and Xy, are the correponding
oriented subgraphs. F\, C F5 iff X, C X» as orientated graphs
(namely they have compartible orientaions).

The homology class 7, is a sort of a quantity to measure homological
drift of the randoin walk. In fact, we obtain

Proposition 6. v, = 0 if and only if p gives a symmetric random walk,
i.e. there is a measure m of Xq such that p(e)m(o(e)) = p(8)m(t(e)),
or equivalently the transition operator L is symmetric with respect to
the measure m.

We may also establish another geometric feature of Dy. For a €
H(Xo,Z), denote by I(a) the minimum of length of closed paths ¢ in
Xo with [ = a.

Corollary 7 (A graph analogue of a result due to Gromov).
#{a € Hi(Xo,Z) | () < 2} ~vol(Do)a* (& — o0),

where k = rank(H,(Xo.Z)) and vol(Dy) is the volume of Dy with re-
spect to the Lebesgue measure on H (X, R) such that

vol(Hl(Xo,]R)/H,(XO,Z)) -1
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3. CRYSTAL LATTICES

Now we shall proceed to the case of crystal lattices. A crystal lattice
X is a connected locally finite infinite graph X on which a free abelian
group I' acts as an automorphism group and its quotient Xy = I'\X
has a finite graph structure.

A piecewise linear map ® of X into ' @ R & R* (k = rankT) is said
to be a periodic realization if it satisfies

®(oz) = ®(z) + 0,

here in the right hand side ¢ stands for the translation by the vector
c®leTQR=R:

There always exists a periodic realization of a given crystal lattice X
with a lattice group I'. Using a periodic realization, it is straightforward
to see

an* < #{z € X | d(zo,z) < n} < con*
with some positive constants ¢ and c;. Thus the positive integer k£ =
rank(I') does not depend on the choice of a lattice group I'. We call &
the dimension of X.

Now we consider a randoin walk on X given by a I'-invariant tran-
sition probability p, or equivalently the lift of a transition probability
po on Xg. Given a periodic realization ®, we put £,(c) = ®(z,(c)) for
¢ € 2,(X). (the site of a particle starting at x; in n-steps). We thus
obtain a I' ® R-valued process {£,}3%,.

To describe the asymptotic behavior of {£,} as n goes to oo, we
need to inroduce a surjective homomorphism p : H{(Xp,Z) — I'. Let
a € H(Xo,Z) and represent a by a closed path ¢ in Xp. Take a lift ¢
of ¢ in X. Since o(¢) and t(¢) project down to the same element in X,
there exists ¢ € I such that ¢(¢) = oo(¢). We then put p(a) = 0. We
extend p to a surjective homomorphism pz : H;(Xo,R) - '@ R.

As a corollary of Theorem 3, we obtain

Corollary 8.

lim lEn(c) = pr(Yp) a.e. ¢ € Q. (X).

n—oo 1N
Now comes a discussion about large deviations principle for the pro-
cess {€»}. As 1£,(c) — pr(yp) 8s n — oo for ae. paths c, the

probability for 1£,(c) — € # pr(7p,) tends to zero as n — oo. Large
Deviation is to study its decay rate. More precisely

Definition 1 (Large Deviation Principle). A large deviation principle
holds for a process {€,} if there exists a lower semi-continuous function
I:TQR — [0,00] which satisfies
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1. {€| I(€) < ¢} is compact for every c < oo.
2. Forevery ACTQ®R,

—I(intA) < liminf % log PI(%E,. € intA)

< limsup ~ log Pu(€, € 4) < ~I(A),

n—oo

where I(K) =inf{I(z) | z€ K} for K CT®R.

Very roughly, in a good situation, it indicates that

1
“Pe(=6n =€) ~ Ba(€)e™™O",

with lim 1 log 8,(€) = 0. As I represents the decay rate, it is called the
rate function.

Theorem 9. A large deviation property holds for {€,}.

To give more details, we let
{(,):C'®R) x Hom(T',R) —» R
be the pairing map between I’ ®@ R and its dual (I'® R)* = Hom(T", R).
Lemma 10. Let x € Hom(T', R).
1.
lim %log E(e Xy = ¢(x)

n—ao0
exists.
2. e“X) is the mazimal positive eigenvalue of the “twisted” transition
operator L, : C(E,) — C(E,), where

C(E,) ={s: X = R | s(ox) = e¥s(z)},

and Ly = L|c(k,) (it is easy to check that L(C(E,)) C C(E))).
3. ¢ is real analytic, and the hessian of c is strictly positive definite

everywhere. Thus the correspondence x — (Vc)(x) is a diffeo-

morphism of Hom(T',R) onto an open subset D inT" @ R.

By using a general recipe in the theory of large deviation (see [1]),
with the rate function I : T @ R — [0, oo] defined by

I(z) = sgp((z, x) — ¢(x))

we have the LDP for our random walk.
We also see
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Proposition 11. D = pr(Dy), and hence is independent of p. That is
D={xeT®R||x|: <1},
where

(1) Ixlls = inf{{lally | @ € H(Xo,R), pr(c) = x}.

Therefore D is a convez polyhedron, symmetric around the origin, and
rational in the sense that the vertices of D are in I’ @ Q.

We easily find that / takes finite value in D and infinite in (D)e.
Indeed,

I(z) = (z,x0) — c(x0), (VO)(x0) = 2,
and hence, [ is real analytic in D.

The assertion (2) affords us a bridge between the large deviation
and positive harmonic functions. In fact, if we denote by K the set
of positive harmonic functions f on X with f(zp) = 1, then, by the
Harnack inequality, we find that K is a compact convex set in the space
of functions with the topology of pointwise convergence, which is, by
the Krein-Milman theorem, the closed convex hull of the extreme points
of I{. We may also check that the extreme points of K are exactly the
minimal harmonic functions, where a harmonic function f is said to
be minimal if, whenever 0 < g(z) < f(z) for any other harmonic
function g, then g(x) = Cf(x) for some constant C > 0. From this
characterization of extreme points, it follows that a positive valued
function f is an extreme point if and only if there exists xy € Hom(I', R)
such that f € C(Ey) and L, f = f. We thus obtain the correspondence
f — x between the set of extreme points and the level set ¢~'(0),
which turns out to be one-to-one. This says that the minimal Martin
boundary is identified with c¢='(0) (if the random walk is transient); see

[5].
4. GROMOV-HAUSDORFF CONVERGENCE
Finally, as an application of the LDP, we show

Theorem (1°). Let X be a crystal lattice and |||, is the norm defined
in (1). Then, in the pointed Gromouv-Hausdorff topology,

]i}(I]I(X,Gd,Zo) =T®R,d,0) (z0€ X,0€6T®R),

where dy(x,y) = ||x =yl

The unit ball in T®R 22 R* with respect to the distance d; coincides
with the convex polyhedron we capture in the LDP. Actually the key
of the proof is a characterization of the boundary 0D due to the LDP.
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To be more precise, put €,(o) = d(z,0z) and (o) = inf,ex €:(0) for
r € X and 0 € I'. By using the LDP, we prove

Lemma 12.
(1) Forz € X, 0 €T, the limit lim,—.o 1€,(0") exists.
(2)
lim —£’ (") = lim l6’(0").

n—oc 1 n—oc 1

We denote the limit by ||| c-
3)

llolli = llollec-
From this, it is standard to show Theorem 4.

Remark. In this talk, the {'-norin of H;(Xp, R) plays an important role
but the £2-norm also relevants to a long time asymptotic of R.W. on a
crystal lattice. Earlier, we established the central limit theorem(CLT)
for a symmetric random walk on a crystal lattice.

Define

lall? = Z |a.[* (a= Z ace € Hy(Xo,R)),

ceES (2 ong

lIx[l2 = inf{||al|z | @ € H\(X0,R), pr(e) = x},
forxeI'®R. Tllen onc has

P(—=¢,€ A) — L /cxp(—w)dx
\/— " (dma) 2 /, da ~

where a = (m(Xy))™! (see [3]).
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HEFORIERVDEREORE

F AL
% % R ¥

§1 ABRBOXBHEOES LIEHIFEOREOMICE L 2800 08 LE L B
WAL (BERBEZELOKRAPE) iconTih<5s. BT, GIIAREL L,
Con(G), Irr(G) TZhZN G D#EFLek, BLU (CLo) BHIERESAOKRE
¥ &Y. 7, BREm OFERKEERDOEEE n(m) TEL, ccl(G), p*(G), cd(G),
o(C) & FNERADHIED B,

(@) :={IC] | C€Con(G)},  #*(6) = Usecon ™(IC))
(@)= {x(1) | x €@},  AC):=U,etma mx(1)).

Jefe s & BRSO MIZ 1L | Con(G)| = | Ire(G) | A& D L2, 2D Z Eidccl(G)
& cd(G) DI E L DEMHAFIERITERO—LELILNS, 72, BHO
MRS 5 %X
IGl=1zG)I+ Y. |l (i%0)

CeCon(G), [C|>1

=|G: G|+ > x(1)?
x€lrr(G), x(1)>1
1%, ccl(G) = {1} BEV cd(G) = {1} AL BIZ G HFT—RUPETH S 720DY,
E+F3EGTHHILERLTNS,
—fFIZ, BALNEBBOR S DKE ccl(G) 5V IZIBHIERORB DK
& cd(G) L OHOWE YR MEIL, 1953 FIIIBREN [cc(G)| =21
33 N. Ito [12) DEERIZHET 5.

FEFR (N. Ito [12]) ccl(G) = {1,m} & 6IE, m XEBRE (=p°) T, Gl
sylow p BREEL 7 —~ABOUKTH 5.

I. M. Isaacs & D. S. Passman {3 Ito D&RD cd(G) iE LT, ROERE S
7.

EHE (I. M. Isaacs and D. S. Passman [8]) cd(G) = {1,m} 256X, G"=1
T, ROVThYP—FHEI 5.
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(1) G B m DWRLIEHBIRE & b 2.
(2) MmITEBXE (=p°) T, Gidsylowp R HLT—XLHVEHRHTH 5.

ZD%, |cd(G)| = 3 DHEIZOWT, L M. Isaacs, T. Noritzscl, D. S. Pass-
man, B. Huppert % ([1], [6], [7], [8], [17] BH) 12X o THBISWHE I oA,
|cd(G)] = 2 DI TIZ LML BEE NS & N7z L IE S i,

=7, ccl(G) {ZMI L T3 LE D Ito D#iR1%, D. Chillag and M. Herzog i &
DRDERDGZONBET, BLALMEShLI LN ot

£ (D. Chillag and M. Herzog [4])
(1) |ccl(G)| >3 T, ccl(G) DTEIFTNTHEBRELL, GUEITRLERETF
EOLBWERETS., ZDLE,
(a) GIITTRT, HHEBpIH LT pREETDHH, »DGDSylowp
W PIITRTHS.
(b) Oy(G) IXTHRTH 2.
() Z(G) = Oy(G).
(d) P/Op(G) 1% Oy (G) LI fixed point free {2fEHI¥ 5. 4%i2, P/Z(G)
13K EBET, G quasi-Frobenius T 5.
(e) H2FEE q(#p) ML T, Oy(G) €Syly(G) TH5B. iz, |G| =
.
(2) 12, HEBEG A (1) D () 15 (¢) TTEFTMrT % bIE,

ccl(G) = {1, |P : Ox(G)|, |Ox(G)|}.

2 THHMIE, D. Chillag and M. Herzog D ROt 52562 L L,
|ccl(G)] =3 % b > - HEDOBEHIEREORBUC T 21581251252 L TH 5.
8, C-HO—#t (RDER1 (1) D—HEEH 3 2645 8) (3BLIC
S.Dolfi il »THBohTWS, Thbb,

EI (S. Dolfi [5]) ¥ G RTRLEMAFLOLLVWERETS. H5EHK
DG w1 LT, G A class-n-separable (T hbbH, 8D C € Con(G) i=
LT, [Clidn¥, o' %, TR 10VWETID) THELDOLETTEMS,
G = MN T, G/O(G) %* Frobenius BEE 25 £ ThD. 22T, MIEGD
W% Hall 7 58, N3G oML IER Hall o' A3 HTH 5,
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Z D S. Dolfi ®#HE, cd(G) 12BT 5 O. Manz OFRD ccl(G) i TH 5.

FE (0. Manz [14]) 722 HEBOWEETSH. b LEE G A* n-separable
T, H2 character-w-scparable % 51, £(G) <3 TdhAH. $§iZ, n={p} 55
X, ,(G)<2Tdh5s.

§2 KOG (x) Bl THICOWTEEL L.

(%) ce(G)={1,m,n} T, (mmn)=1 2 m<n.

ZDEHLWOFE LTIE, 3RDOMFREESs, 4 XD HE Ay, (L Eipg (p.q
(IHNLELHERT, p<q=1+kp & T5) O Frobenius i Gy $45H 5.

G ccl(G) cd(G) degree pattern
S {1,2,3} {1,2} (1,1,2)
A4 {1s3!4} {113} (1,111a3)
1,p. 1, 1,....1,p, ...,
G {1,p.q} {1,p} ( p k p)
M .

Eox»s, IhoofficdwTid
o cd(G) 1 ccl(G) B LI REEBRW- b0,

o degree pattern i3, 1 KIEHA m @, m ROBHEEL LB (72720,
n=1+km)

b oTWAILMHALNS, FfE(x) Zili/THE GAP TRARALLIAT
RTIDEH L oTnz,

AE 1 KM )BT, (m,n)=13LETHS. HlziL, SL(2,3) T3,
cd(SL(2,3)) = {1.4,6},  cd(SL(2,3)) = {1,2,3}
Lo THEY, cd(SL(2,3)) ={1,4} L3 L6 LW,

AT 2 £ ) BlATRELTLOIFEL LW, FIRE, KO EAHL
nNTwa,

o ccl(G) = {1,m,m+1} % 51X, m+1I13FEK~<ETH5 (M. Bianch # [3]).

o m DHHLE B, cclG) = {I,mm + 2} Z#i-THG IFELEL LW
(A. Mann [2, Chap. 3, §11]).

FITROMEFEZ HND.
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B 1 GH&EM (x) 2727461, cd(G) = {1,m} L& bHh. E6I,

n=1+hkm &¥5E, degree pattern (X (1,....,1,m,....m) L2 5H,
m &

FIfE 2 &ft (x) WA THIFHET L7200 m,n (ZMT 28RN EM S
R &,

I 1 IS L T, ROFRPFHFONL,

EE1 cc(G)={1,m,..., mg,npye, mp&L, m=my---mg, n=n;- -1y
EBC L (myn)=1%61F, KPXKHLD,

(1) (a) GIIWRET, G=MNx ALKEDH, ZIC, MIEIGOIEEHR
Ze 0§t Hall m(m) 83538, N QIEB LT Hall 7(n) 358, A 130T
RETH 5.

b)ys=t=1, m<n?22n=1(modm) THb. i, ccl(G) =
{1,m,n} £%25.

(c) G 1% quasi-Frobenius 8 TdH 5.

(d) b L GATRLEKNT-% b Wi bld, M IRREFET, Orm)(G) =
Z(G) ;"> N = Oﬂ.(n)(G) =G tib,

(2) cd(G) = {1,m} TH 5. 12, G D degree pattern X (1,...,1,m,...,m)
e N e
m|Z(G)| k|Z(G)I

Thb, 2T, n=1+kmThb.

EH PSELIZRDRANELNS.

F1.1 ccl(G) = {l,m(ll),...,mg}),...,171(1r),...,711£:)} L, Bk=1,2,...,r
LT, m®) = m(lk) mg’;) EBLIOLE, #4505 1L T (m),m@) =
1%61E, r<2&i3,

iz, HBCWT2F 22 2 70@MED, ccl(G) PGS 5 r BO A
ELOHBIIDONT, KA LD,

F 1.2 ccl(G) = {1,2,...,r} &BIL, r <3 THDH. i, r=30L 5,
G/Z(G)=S3 &5,

r=2DHEIIDWTIL, Ishikawa [9] DEEYH S, % 1.2 1F d(G) XHT S
XK@ B. Huppert [6, §32] DR D ccl(G) M TH A%, [HED#HRHT M. Bianch
B ko THBEATVA.
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EH (B. Huppert [6]) cd(G) = {1,2,---,t} &£TH& &, KRIHH LD,
(1) GHUBTHS <—t<4d
2 bLt>4%51E, t=6T, G=SL(25Z(C).

Mg 2, v2bb, () 2WIRIFEST L2200 m,n W3 2 H&EN
LR LTIE, KOEM 2 £ N. Ito and G. Michler D2 LFELT 5,

TR 2 G4 (x) 2L, »omBELsERFRAF L2V ERET S, M*
¥GOHLZG)IZEENEWG D n(m) BFE, N* & GOIEHL n(n) B5
BLL, G =MN LB ZDEE, cl(G) = {1, |M*: M*nZ(G)), |IN*|}
MY D,

IR (N. Ito and G. Michler [10]) p % #¥&¥5. DL %, KIZFMHE

(1) G 3% EH Sylow p ST HEL b D.
(2) G it pTET, EED yx € Ir(G) 1K LT ptx(1) TH5.

BGHVEMYE ) 2T 2o, 81 (1) () &b, G Sylow #h5HIET
RCP|TH5S. > T, LD Ito-Michler DEBRIIETED pe n(G) iZxF L T

Syl,(G) > PH*G DIEREBTH <= p ¢ p(G)
2BHTA. EoT, EH1(2) &Y,

fE&EDp e n(m) I2X LT, G D Sylow p #H5 8 PIIIEHHARETE L,
LD g € m(n) \2xF LT, G D Sylow ¢ H7# Q IXIEMMATETH 5.

FIT, ®E2OM ELTGOHall n(m) BF4EM %, N*LELTGCD
Sylow ¢ #3538 Q * L WX, {ERD g € 7(n) LIEFED Q € Syl (G) 2L T,
ccl(MQ) = {1, m. |Q[} AV LD, L&, BE1(1)(b) £V, |Q =1
(mod m) £ % 5.

DEDZ EDn, Foff(x) BB THIFET SO0 m,n IZMT 55 L
TROBEENHOLND.

F 2.1 G 3&MH (x) /oL, »oMBRLEMATFEL LV EIRET S.
nDEEBTREn=p1%p2 ... p% LT HLE, EEDI(=1,2,---,8) 123
LT

pi=1 (mod m)

MR IO,
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AE CoOERE, EICEBALZ A Mann QR (n=m+2 T, niidHi)
BLU M. BianchEDEE (n=m+ 1 DPE) 2§ATVES,

TR 1 LROTER 3 285 &, KIZB~/: S, Dolfi [5] DER & FHROKER
RO,

FTE 3 GUTRLZERMEFZLILLZVEERETS. 57 cn(G]) xxL
T, G ARD 4 &MF

(1) G {7 Hall # 8B EE M % b D;

(2) G AL IER Hall o' BMAHEN 22,

(3) Z(G) = Ox(G);

(4) G/Z(G) i& Frobenius # NZ(G)/Z(G) % % - 7= Frobenius % T 5;
BT RO, cl(G) = {1, [M: Z(G)|, IN]} £ % 5.

§3 TR 1 LER 2 OHEHOBBIIOWTERE S, TH 1 OFBICBITS
F—K4 M, RDN. Ito 3 & U B. Huppert D&ERTH 5.

EE (N. Ito [11]) p*(G) 3 p,g(#) £ T 5. £ED C € Con(G) 2L T,
pg { |IC| 6L, (LELLIE, pei ARBAAILIZEST) Gk prE
FT, GO Sylow p O EIITREFEL 2 5.

1478 (B. Huppert [6]) G (3G HMEE AIERTALIREL, A=TIr(4) =
Hom(A,C*) &BL. TNt &,

(1) (IGL1A) =1%61E, A=A (as G-sets) TH 5.

(2) GH WL 6L, cd(GA) = {|a®| | a € A} TH 5.

EE 1 OB

N.Ito DEREL YD, EEDpe n(m) IS LT, GidpR&F, »2 P € Syl(G)
HETHRE LTEV, SOLE, G/O,(G)= PThodb, Oy(G) 2 G Thb
SEIEET S,

m:=m(m) = {p1,p2,-.,Pr} £ L, Go:=G, Gi:=Gi-1NOy(G) (1<i<7)
EBL. E-T, H:= Ni=1 Op:(G) >G' T, HIi3n HTh5h.

G=GyD>G;DG2D---0G,=H> ({1}
13 G DIERFIT,

Gi—1/Gi = Gi-1/(Gi-1 N Oy(G))
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= Gi-10,(G)/0y(G)
< G/0y(G) = P; € 8yl,(G)

THHPS, Gl nTMRT, H=0,(G) it GOMi—o Hall v’ H5BEL % 5.
7, M% GO Hall n B ET B E,

DIM)<MNG < MNH={1}.

EoT, M ITRETHAE.

G:=G/Cg(H) ¥t L, ge G\Cg(H) ¥ 5. H=0,(G) THahb, ¢
a8 T, [0 X M BN FEAIR1THE. LoT, FEDpemiZttL
T, (IG:2(G),p)=1&%Y, Z(G)3C » Hall n B3WEEL. Zhi b,
MaG%B5.

KiZ, H R THLIELERT. bL Hbax e H\ ZH) BFETH L
HUE, [2€) 1k o BE LD, Co(z) 12 GDH 5 Hall n S EGEL. foT,
MCg(H) <G &Cg(H) < Colz) &9 z € Co(M) &4 h, H=Z(H)UCH(M)
85, LaL, HRFETRTH B LHELLDS, H=Cy(M) ThiFhids
LW, TOLE, G=MxHThHrH, ThidCoEBEOKIIIHTSE
FILT S, $oT, HIWWRTHS, 52, G'={1} &4V, GIITHET
Ha, $7, AOHICMIICOERBIEL G,

51, N % GOt Hall n(n) B8, A * G OW% Hall m(mn) #
GBEE+AE, H=Nx AT,

G=MH=M(NxA)=MN x A

LEED. TIT (1)(a) ATREL.

DF, GRUBLERMEFEL LW EREL T et kbiv, fEoT,
G=MNT, MiiGOIF ERALTH Hall n(m) M58, N=H 3G OIEHR
%[ Hall w(n) 838 & LTI,

N RTEBETHE NS, N = [M, N x Cn(M) Thh, Lib G iRz
BANTE b 72w HELTWBDTCOn(M) = {1} #8Hh5. Shib,
N =G & 2(G) = 0:(G) NEHI A 5.

zeM\Z(C) £¥5h. ZDLE,

2] = |2V = [2¥] = |N : Cn(z)| = |N|

THb, CIT, Cy(x)={1} LB T LITKIZLA.
bLgeCn(x) &t nE, Colzg) = Cole) N Calg) 72 28| 13 o' Bk b,
16| =1. #-T, ge NNZ(G)={1} &%, Cn(z)={1} 2145,
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FIHELZ, ye N\ {1} & 51, [C] = |M : Z(G)| A2 5.
LT, mi=|M:Z(G)|, ni=|N| &BL.

EEDge G\(MUN)IZHLT, g=ay(xre M\ {1}, ye N\{1}) &£ BL.
bLzeZ(G)aoid, g€ =yC|=m THHI LIZIEETS.
(i) |gC| P rBDLE, g <|M:Z(G)=m ThHh, £, Mk
ThHhoHHIH
91 2 lg| = ly™] = 1M1 : Z(G)| = m.

T, |¢8|=m b, s=1%155

(i) |g°| P BDEE, ze M\ Z(G) &0, [¢C]=[z¥|=|N|=n. tto
T, t=1Tdh5s.

PEDI ERS, m=m=|M:Z(G)|, n=n = |N| %2145, &6, £
Dye N\{1}I2HLT |3 =m THBEZELE NG LY, n=|N|=1+km
(GkeZ)ehd. £oT, (1)(b) ARET.

(I)(c) & (d) DFER ((13] M) (IHWL, (2) 2F ).

N=Irn(N) L. Tk k&,

vl =1y = M : Cy(@)| =M : Z(G)| =m
Thohh, FIGRHEL Y
cd(G) = ed(MN) = cd(MN) = {|y"| | y € N} = {1,m}.
£7:, GO 1KKEOMIKIL|G: G| =|G: N|=|M|=m|Z(G)| THE15
> x(1)? =G| =m|Z(G)| + k| Z(G)|m>.
X€Irr(G)
o T, |{x €Irr(G) | x(1) = m}| = k| Z(G)| =14 5. i

EIE 2 OIRADBLRE

M* % &% G o Hall n(m) B HEE M, G OME—® Hall n(n) BFEHEE N &
5, Z0OLE, EEDGge G LT, |g¢|=m,n L 2bHEIZOVWTEN
Fh |gf | EHET UL LW,

o198 = mOPE: Co-(g) = M*N*N(Z(G) x N) = (M* N Z(G)) x N* T
Hoh6, g€ = |M*N*: (M*NZ(G)) x N*| = |M*: M* N Z(G)).

o [gCl=n e g2 &L G D Hall n(m) MR M HFFELT, M, <
Ca-(9) TH%B. —77, |Co(9)| = |G*NM"| < |G*|z(my = |M*| = |M;](3h € G)
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ThoPh, Co-(g) = My 2185, €T, |g°°| = |[M"N* : Mj| = |N*| &
25,
PEIZLY, g8 2 AREL. i

§4 B%ZIS, TR 1IOEAELT, cd(G) BLUcl(G) »oliikansrs
7D 12D IEES X THI.,

—H%12, cd(G) DROFEREDES o(G) DTEETHEE L, p,q€ p(G) 2L
T, pg|nkifli’cdnecd(G)NHFETHLE, 2ODHA p,q XWTHELZ LI
kb, degree 77 7 T(G) PR T &S, ML T, ccl(G) DILDEREK DK
Ep(G)DTRTHEEL, pgep(G)IHLT, pg|n%ki#/7 n e cc(G) #°
FHETHELEE, 2200 p,q kATHELAT EIZL Y, class-length 7T 7 T'*(G)
T 5.

degree 7 7 7 I'(G) (2x+ L Tig, O. Manz, R. Staszewski, W. Willems %42 &
BROERFHNON TS,

EH (0. Manz [15], O. Manz-R. Staszewski-W. Willems [16]) {EZE DA
BGIIHLT,

(1) T(G) DHEEEEFIIEA3B/TH .
(2) GHUEL6IE, T(G) DEEEMIE 42 TH 5.

F L1 #T(G) DEHRTI VRIS LT, ShEENOERAELNS,

FE 4 EEOFREGIIHLT,

(1) T*(G) DMFER M #2 B TH 5.

(2) T*(G) DMERAFH2E L 51, GURTETHS.

(3) G HETREMBEEL H1F, (G) DMK 1 HTH5.

61, EB 1 EERADS, EHHILT(G) & T(G) DHOMIEEES.

$ 41 EEOBFREGIIHLT,

(1) T*(G) DML 2% 61E, [(G) DELEHRMNE 1 ETHS.
(2) T(G) DMEERSH 2 WL E% 612, [*(G) DR 1HETH S,

EENR
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ME16DECEBEEZ b DU 12DHET
E 2 DWW T

MR TEISEHM SR BT
*1r i

HONTWAHERIPEFHOMEBIITRTHEYRETH S, Mz, £50
FEREIIHLT, TALMEE LTLoHIRFELESTFAT 5. HIRY
CFmMONEICHT 5RO R Bruck-Ryser D[] TH S, FRY
HEHMOMBUEEERRETHL L) FHEND DA, b L ORI
FoTWBE LS, 1570 5P L 1B bz v, Bruck-Ryser #
EHETH =R L WIRADHREIZ 10 TH B D, OISOV TIIE <D
BEFEDBIIE L., B#ii2td 1989 4E 12 H.Lam & L.Thiel & S.Swiercz[4] {2
L HENEL NV TZOIEFAIFEY S N7, Bruck-Ryser DEMCH /X~
WRLVROMEIZ 12 TH S, ZOMNBDOFHEFMIIZD>WTId, ZJanko &
T.van Trung H%--#ED G (FI 2L [3]) CEOEHCHBIEED ] iEt: % W7,
1987 442 K.Horvatic-Baldaser & E.Kramer & [.Maturic-Bedenic[2] 1&. {28
120455 FHOBACHRBEEOMEIT 16 DHUTH L), 9DHFTHE1%
REH L 720 S OFRAWE N2 DEHETHIZ OV TORROFRIEE Bbh b,
S0/ — TRV I6OHCHBEZ b 212 DFET Iz DV THEX
0 bL., COL) LUBR2OIEPRIFELALETH L, MB8nED
B % %2 symmetric (12,6, 12,0,2)—divisible design 2SFET 5, (—#%
MIIOWTE, KT B 2MoZ &) 22T, K 2 DWFFESNIEZ D design
DAL NMTRTNEVI T ETH D, THHELHNS, BHLETHS
Nr#RE H A R2oETEmMoB e oA R ETAE, H I
generalized quaternion group TH5Z & Thd, Lub. HCAMNHOIEEZ
FEZ e WHETH . syimmnetric (12,6, 12,0, 2)—divisible design DfFAE - JEFELE
FAMOSATVAEVI L EEFLTE

§1 —fi%ia

S THLSKEDYHNIL, KAT 5] (PR TV S,

- 182 -



RE 1.1 N = (P, L) M n OFEVmME T %, G % IliZ center Py &3t
M7% axis lp b2 1T DIE m(# 1,n) D clation group & T 5,

SN2, midn OPET. Phely Tha,

(Po) = {lo.h,--- . L}, (o) ={Po.Pr,--- P} £ T B,
’P(,,Pl,---,’P§+" T P L0 G-orbits £¥ %o

Lo Ly, Loz, * L 10 G-orbits &35,
CDEE, KDEHIREL TL v,

P,‘ = {P,}, Ei = {l,} (0 S i S n),

|Pil=|Lil=m (n+1<i< ’,'T: + n).

(1)) = Pli-iy2 4ty UPl-ny 24 (i) U U Py ey (1< <),
(P) = Li-nzsmen U Li-nzsmen U ULinrimeny (1<i<n)

Q % G ® point orbit, A # G ® lineorbit £ T4 &, (QA)=]|0n()]
EBLe ST LEA RAYRIDEDNHIZELTQLEAIZORMEFL
TikE 5,

G DHEME K 1L T, K =T,enp (€ ZIG). K= {u e K} &
B<o

mi;=(P; L) (0<ij< ™= +n)
M = (m"j)ﬂs-i-jsﬁw' L= ("l‘*i)r-+lsi.js$§+ra = (l"-")(lsi.jS%—l EB <,
n+l§_i,_j5_%+n LT, PeP. Lel; &5,
Dj={peCPrel)} m+1<ij<Z +n) i<

O, |Dyl=mij=01 (n+1<i< % +n)

BHEI2()n+1<ii'<Z+ntTd, JNLE,

D, D,

n if i=1"

0 ifiFfad{i,?}C{2+m+1).2+(n+2),- . 2+n+2)}
forsome0<k<n-1,

Zn+l§j5 L

-~

G otherwise

(i)n+1<j /<L 4nktsb, SOLE,

m

-
D,'_,' D,'_,'I

Zu+15is',+'f+n
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=

if j=7,
0 ifj#jand {57} C{2+m+1),2+(n+2),---, 24 (n+2)}
forsome 0<k<n—1,

G otherwise

WE1L3()0<i i< -1EF3, COLA,

Logjca oy Lislej
n if i=7,

=¢ 0 ifi#dand {i,}C{& 241, (B4 (2-1)} forsome0<k<n—-1,
m otherwise

(i) 0<jfSE-1ET5, ZDEE,

EOS:‘S"—,:- _y bigli
n if j=7,

=¢ 0 ifj#j and {jj}C %,%+1,»--,(%+(1’7‘!—1)} forsome 0 <k <n-1,
m  otherwise

WE143)L;=01(0<ij<E 1)
(i)
L()(] L0] LO n-1
L= LEO Lt 1 Ll.n—l
Ln—lO Ln—-ll e Ln—ln—l
EBLo ST B L (05i,j<n-1)id 2 ROEHTH. cnEE,
(i) I % & ROWHFTH, J % 2 ROL1EHFTHETHE

nl mJ --- md mJ

md nf -+ md mJ

L'L= ='LL

md mJ -+ mJ nlf

B L5 HAHE S = (Q.B,]) # XD £ 5 LEHT 5o
Q={QQi . Qu_}, B={BoBi, - Ba_} 0<ij<i-1)

Q,‘]Bj — I,'j =1

Qi = {QE’Q:-—I+1"..’Q:'-,E+;"';—I}
Bi={Buy,Bu), -, Buiyz,} (0<i<n—1) £B
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R 1.6 S = (Q,B,I) i¥ n point classes Q,,Q3,---, 9, & n block classes
By, B,---,B, % 2 symmetric (n, 2,0, m)—divisible design T 5,

{R5E 1.7 H % T1 @ collineation group T, G {3 H DIERIBIEEL T 5,

YVoe H

¢ 'Gp =G P? = P, bb® =lpo

@ 13 {Po,Pr, -, P} Lmﬁ#’&gl%@'ﬂ'e

@ 1% {Pus1, Posz,- -, Pua,, } LOBREFIEEZT,
@ 1% {By, By, -+, B, } Jla)lﬁ‘fﬁ’i'ﬂg‘ﬁ T

@ 13 {Bns1,Bna2, - ,.2 } LEo@E#®Es|IZEI Y,
@ 13 {Q0, Q1. Qn 1} Lmﬁfﬁ’i’ﬂg‘ﬂ Fo

@ 13 {By, By, -, Buoy} LOBMES|IEEZT,

P¥ =P, I =L, ETHE,

myj = |P N4l = |(P; N )l = |'P“’ﬂl"°| = |P]| Nly| = (P;, Li)) = my,;,
SILT. o B L= (ly)ggjem, PITLTICBIL TRIREFIE R, BEo
T, p i SOHCAMEF AR To ZOBECHRBY® g LI LizT B,

§2 % 16 @ collineation group #* b 2L 12 D4R FH

B 2.1 H 28 12 05FH 1 = (P, L) O3 16 @ collineation group
L4 5,

#H58 2.2 H 1% cyclic % 7213 generalized quaternion group T& %,
I::;qu ZQXZQéH@X‘.'gx‘.%O a

G<Z(H), |G|=2, G=<p> t¥5,

G & H OEHEBT T

G i3 elation group Th 5,

G D center ¥ Py, axis ¥ lyp & ¥ 5,

(Py) = {loyly, -+ hia}s (o) = {Po, Pro+++, Pra} &% B

Po,P1,---,Pay & P O G—orbits,
Lo, Ly, ,Lgy % L D G—orbits LT 5,

<ZT
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P;={P}, Li={li} (0Li<L12)

IP,I = |£,| =2 (13 S i _<_ 84)

(&) = Poi—1y+13 U Pogi-ny+14 U - - U Poi—1y+18

= Peis7 U Poisg U - U P12 (1 <i<12)

(P) = LgiszU Lgips U - ULz (1<i<12)
M= ("Lij)OSiJSS-’I! m,-j = ('PJ [,,)

L = (mij)is<ijess = (lijlosij<n

13<i,j <84 ICH LT, PjeP;, Lel; Ti¥®AE,
Di;={n€G|Py* € (i)} (13<1i,j<84)

|Dijl =mi; =0or 1

e 0<ii'<TILET B, ZDEE
12 if i=#,

Sogi<n lijli = 0 if i#4, {i,i’} C{6k,6k+1,---,6k+5} forsome 0 < k <11,
2 otherwise

e 0<j,i<TI ETH, ZNDELE
12 if j=74,

Socicn lijliy = 0 if 5#7, {4,7} C{6k,6k+1, .- 6k+ 5} for some 0 < k <11,
2 otherwise

.l,’j=00['l

Loo Loy -+ Lon

Lo Lyy -+ Ly

oL = &<,

LllO Llll Lllll

ST, BL; B6RDEFTHIET R E, & L 116 ROBBITFNZ % 5,
o[ %GRDUMATHI, J 2 6RDE1IEHFITHIET R L,

121 2 .- 24 2J

2J 121 --- 20 2J

L'L="LL=| = . .

2J 2 ... 2J 12
o HAME S = (Q.B.1) #RDEHIZEHT b,
Q={Qo,Q,---,Qn}, B={By, By, -+, Bn}

0<4,i<THIIHLT,
B,‘IQJ' — lij =1
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0<i<11ILT,

Qi = {Qei, Qoisr.- - Quivs)
B; = {Bsi, Boi+1, -+ Birs}) EB <o

oS = (Q,B. 1) 1% 12 points classes Qy, Qy,---, Q11 & 12 block classes 8y, By, - - -, By
b2  symmetric (12,6,12,0,2)—divisible design (2% 5%,

eVre H, 7=7G =€ H/G = H 3 S \ZEKRIZEAT 5,
#2222 L, REB5,

15 2.3 H (368 8 ? cyclic group F 7213 dihedral group 2% %, HED
Be.

~—1 -1 =2

H=<# p|p'tp=5" j2=1#=1>

858 2.4 H 13 S @ point set Q L, Dblock set B £, FIFAIIZERT %,

AL COWUSRY L BvETE, bL, LERLSITT O dual EHEZ D
ek,

JreHsti# 1, FI3QNHBLREET S,

1.'7be0 %ET%&LTJ:!AO

T Py EEEL LTRHEIET 5,

<7, G>|

2-1<7, Gop, | =P | <7, Gop,|=|<T, G>|

B2, <7 Gop,|=3l<7, G>|=20rdo0r8

B2, Jpe<T. G>:o(p) =2 Py =Py

n#E
ZIT. G=<p>
C i 2orx12LidblwoT, ZTHEFN, O

83 H »% cyclic D& %

H 052 16 O cyclic group &34, H=<7> &35, HDERIKRD4
DO EDTNHITH S,

H O (Py) = {ly} Lo orbits DH 1 XL (lg) = { Py} LD orbits O+ 1 XidRK
DLk DB,
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Case 1444 & 444 TH5,
Case 284 ¢ 84 TH 5,
Case 3444 L 84 THb,
Case 484 ¢ 444 THb,

Case 313 IT @ dual #F 2 i, Cased IZIFHFEN B, I, Case 3 3%
AL T&Ev,
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Casel £EX5, 7 il r &/ LilT 5,

7 = (Qo, Qs, @12, Q18, @1, @1, Q13, Q19)(Q2, @8, Qu4, Q20, @3, Qu, Qu5, Q21)
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(@52, Qss, Qoa, Qr0, @ss, @9, Qus, Q1)

T D BIBIAEHLREMTHE, Thbb, Lor © Q ILBIFA/ERI
BT, Qb HiI B xHITITE v,

Qo, Q1+, Qs FBBICHUNPRT, Loo=1 ELTLV, 7 OERADHBD
Ty Q6, Q7.+, Qoz EXIET B L HIZHU MR B,

Q24 Qa5+, Qag THBIZHUDNRT, Lyy =1 ELTE, 7 DIEHND
ADT, Q0,Qa, ., Qu EMHIETHELHIZHUIDI LB,

Qg Quoy+,Qsy ERBICHUMNRT, Lyg=1 L LTIV, 7 DIEAND
BDT, Q54 Qss.---,Qn EWIET B L HICHUMNZ 5,

{a b cde f)\
b d c [ e
g h i 37 kI
h g j il k
mn opagqr

\n m por q)

LBWD6RDEBRITHOEREI S LHMEE Q LT 5, |Q] =48,
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Lyg
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(Q2, Qs, @14, Q20, Q6. @32, Qus, Qua)
(Qa, Qo, @15, Q21, Qa7, @33, Qo Qui5)
(Q4: Qio, @16, Q22, Q28, @4, Quor Q)
(Qs, Qu1, @17, Q23, Qa9, @35, Quit, Qu7)
(Q25, @51, Qoo, Qo6, Q9, @5, Qe1, Qo7)
(Qs0, Qs6, Qe2, Qes, Qs1, P57, Qoa, Qon)
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I
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I
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d
J
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Abstract

In this note, we give a relationship between the generalized
Hamming weights for linear codes over finite fields and the rank
functions of matroids. We also consider a construction of g-th
MDS codes from m-paving matroids.

Keywords: generalized Hamming weights, g-th MDS codes,
paving matroids.

1 Introduction

The closed connection between matroid theory and coding theory
has been discussed by many researchers. For instance, Greene ([2])
gave a proof of the MacWilliams identity ([4]) for the Hamming weight
enumerator of a linear code by using the Tutte polynomial of the corre-
sponding matroid. Barg ([1]) studied the relation between the support
weight enumerator of a linear code and the Tutte polynomial of the
matroid. In addition, he showed the MacWilliams equation of the sup-
port weight enumerator in a simple form. In [7], Rajpal studied paving
matroids and the corresponding linear codes.

The generalized Hamming weights of a linear code were introduced
by Wei ([10]). The weights are natural extensions of the concept of
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minimum Hamming weights of linear codes. Many applications of the
generalized Hamming weights are well-known. They are useful in cryp-
tography (cf. [10]), in trellis coding (cf. [3]), etc. The generalized
Hamming weights have been determined for binary Hamming codes,
MDS codes, Golay codes, Reed-Muller codes and their duals ([10]).

The g-th maximum distance separable (MDS) code was defined by
Wei ([10]) as a linear code which meets the generalized Singleton bound
on the g-th generalized Hamming weight. In [9], Tsfasman and VIidut
gave a construction of the codes from algebraic-geometric codes.

In this note, we consider the generalized Hamming weights for the
m-paving codes. We also look for a construction of the codes from
matroid theory. Then we give some examples of the codes.

2 Notation and Terminology

We begin by introducing matroids, as in [6]. A matroid is an
ordered pair M = (E,Z) consisting of a finite set E and a collection Z
of subsets of E satisfying the following three conditions:

(I1) peI.
(I12) If I€eZand I'C I, then I' € T.

(I3) If I, and I; are in T and |I,| < |I;], then there is an element e of
I, — I, such that I; Ue € T.

The members of Z are the independent sets of M, and a subset of
E that is not in 7 is called dependent. A minimal dependent set in M
is called a circuit of M, and a maximal independent set in A is called
a base of M. For a subset X of F, we define the rank of X as follows:

r(X)=max{|Y| : YCX, YeI}.

The dual matroid M* of M is defined as the matroid, the set of bases
of which is
{E—-B : Bisa baseof M}.

When we denote the rank of Af* by r*, the following is well-known:
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Throughout this note, let IF, be a finite field of ¢ elements. For an
m X n matrix A over Fy, if E is the set of column labels of A and T is
the set of subsets X of E for which the multiset of columns labelled by
X is linearly independent in the vector space ", then M[A] := (E,I)
is a matroid and is called wvector matroid of A (cf. [6]).

For a vector @ = (21,...,Z,) € ]F;‘ and a subset D C ]F‘;‘, we define
the supports of £ and D respectively as follows:

supp(z) := {i|=z: #0},

Supp(D) := |J supp(z).
rebh

Let C be an [n, k] code over F,. For each g; 1 < g < k, the g-th
generalized Hamming weight (GHW) d,(C) is defined by Wei ([10]) as
follows:

dy(C) := min{[Supp(D)| : D is an [n, g] subcode of C}.

The weight hierarchy of C is the set of integers {d,(C) : 1< g < k}.
The followings were also proved by Wei ([10]):

Monotonicity : 1<d(C)<dy(C) <--- <dp(C) < n.
Duality : Let C* be the dual code of C. Then
{do(C) : 1<g<k} = {L,2,...,n}—{n+1-dy(CH) :
1<¢' <n-k}
Generalized Singleton bound : dy(C)<n—k+g.

3 GHW and m-Paving Matroids

3.1 a connection

First, we introduce the connection between the generalized Ham-
ming weights of a linear code and matroid theory. It is usual, for
studying the relationship between linear codes and matroids, to deal
with the matroid of a generator matrix of a linear code ([1], [7], etc.).
In this paper, however, we shall study the rank n — k matroid M[H]
of a parity-check matrix H of an [n, %] code C to focus on the gen-
eralized Hamming weights of C. Since it finds that M[H] is deter-
mined by C (not the chosen parity-check matrix H), we shall represent
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M[H] = M¢. However, a linear code C has more information than the
matroid M. Indeed, a matroid is the vector matroid of several linear
codes. It is also clear that the dual matroid (M¢)* corresponds to the
matroid Mq.1 of the dual code C*.

The following is well-known ([11]).

Proposition 3.1 Let H be a parity-check matriz for a linear code C
over Fq. Then dg(C) = ¢ if and only if the following two conditions
hold:

(1) every set of 6 — 1 columns of H has rank 6 — g or more;

(2) there exist 6 columns of H with rank § — g.

The above result immediately shows the following theorem.
\]

Theorem 3.2 Let M¢ = M[H] be the vector matroid of a parity-check
matriz H for an [n,k] code C over F,. Then dy(C) = 6 for a g,
1 < g <k, if and only if the following two conditions hold:

(1) for any (6 — 1)-subset X of E(M¢), r(X)>d —g;

(2) there exists a §-subsel Y of E(Mc) with r(Y) =4 —g.

Example 3.3 Let Mg be a uniform matroid U, ,, that is, a matroid
on an n-element set E, any (n — k)-element subset of E of which is
a base. For any (n — k + g — 1)-clement subset X, it follows that
r(X) = n—k for every g, 1 < g < k. There exists an (n — k& + g)-
element subset Y such that »(Y) = n — k for every ¢g. Therefore we
have that d,(C) = n — &k + g for cvery g. Consequently it follows that
C is an MDS code.

3.2 m-paving matroids

An m-paving matroid was introduced by Rajpal ([8]) and the ma-
troid is a generalization of a paving matroid, that is, a rank » matroid
whose circuits have cardinality r or r 4 1.

Definition 3.4 A rank r matroid M is m-paving for m < r if all
circuits of M have cardinality exceeding r — m.

It is not difficult to show that any uniform matroid U, ,, is 0-paving,
and any paving matroid is 1-paving. These are the only 0-paving and
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1-paving matroids. In [8], Rajpal showed that if G is a generator matrix
of a first-order Reed-Muller code R(1,m), then the matroid M[G] is a
maximal binary (m — 2)-paving matroid.

For m < n — k, we define an m-paving code as an [n, k] code C
over F, such that the matroid M¢ is an m-paving. From the above
argument, it is clear that the dual code R(m — 2,m) of a Reed-Muller
code R(1,m) is an (m — 2)-paving code.

The following result indicates the minimun Hamming weight of a
paving code.

Proposition 3.5 ([7]) For a parity-check matriz H of an [n,k] code
C, if M[H] is a 1-paving matroid, then the minimum Hamming weight
of Cisn—korn—k+1.

On the generalized Hamming weights of an m-paving code, we shall
prove a bound which is a generalization of the above result.

Theorem 3.6 If an [n,k] code C over [F, is an m-paving code, then
dg(C)2n—k+g-m (1)
foranyg, 1 <g<k.

We remark that the bound (1) contains Proposition 3.5 because the
bound corresponds to d;(C) > n—k for a 1-paving code C. Combining
the above bound and the generalized Singleton bound, we note that if
C is a m-paving code, then d,(C) =n—-k+g-morn—-k+g—m+1
or,--,orn—k+g.

3.3 g-th MDS codes

We consider a special class of linear codes defined as follows:

Definition 3.7 ([10]) Let C be an [n, k] code over F,. For g, C is
called a g-th MDS code if d,(C) =n -k + g.

It is well-known that an MDS code is also a g-MDS code for any ¢
and a ¢g-MDS code is always a ¢'-th MDS code for any ¢', ¢' > g.

The following proposition is due to Tsfasman and Vlddut (Corollary
4.1 in [9]).
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Proposition 3.8 If C is an [n,k,d] code andr = n+2 — k — d, then
the dual code C*+ is an r-th MDS code.

Now we give a construction of g-th MDS codes fromm m-paving ma-
troids. That also indicates a duality for g-th MDS codes. From Theo-
rem 3.2, it is not difficult to prove the following lemma.

Lemma 3.9 Let C be an [n,k] code. Then C is a g-th MDS code
if and only if r(X) = n— k for any (n — k + g — 1)-element subset
X C E(Mc).

Theorem 3.10 Let C be an [n, k]| code over F,. If C is a g-paving
code for 0 < g < min{n —k, k —1}, then C* is a (9 +1)-th MDS code.

Proof. Since Mc is a g-paving matroid, it follows that |A] > (n —
k) — g + 1 for any circuit A of Mc. If we take any (k + g)-element
subset X of £ := E(M¢) = E(Mc.), then we have that

r(X) = |X|=-r(Mc)+r(EF-X)
= (k+g9)-(n-k)+(n-k-g)
= k.

From Lemma 3.9, it follows that C* is a (g + 1)-th MDS code. The
theorem follows. a

Let P, Q and R be the following binary matrices:

/100001000
010001011
P=J|l001001101],
000101110
\0 00010111
/1000001111
0100010111
Q ={0010011011]/[,
0001011101
\0 000111110
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1000001111 101001
010001011101 0101
R = 001001101011 0011
0001011100001111
6000010000111 T1T1T11

In (8], it is showed that the matroids A [P], M[Q] and M[R] are the
only binary maximal 2-paving matroids of rank 5. From Theorem 3.10,
we have the following result.

Corollary 3.11 The binary codes whose generator matrices are P, ()
and R are the binary third MDS codes.

The following proposition is mentioned in [9] (Corollary 4.1) as a
construction of g-th MDS codes. We can also give a proof for the result
by using Theorem 3.10. That means Theorem 3.10 is a generalization
of the following proposition.

Corollary 3.12 ([9]) For an [n,k,d] code C and g =n+2 -k —d,
the dual code C* is a g-th MDS code.

Proof. Weset ¢' = n+1—k—d. Since the minimun Hamming weight
d corresponds to the minimum order of curcuits in Af¢, we have that
|A] > (n— k) — ¢' + 1 = d for any curcuit A. So C is a g'-paving code.
Therefore it follows, from Theorem 3.10, that C is a (¢' + 1)-th MDS
code. (]

Now we give a characterization of a generator matrix of a g-th MDS
code.

Corollary 3.13 Let G be a generator matriz of an n, k] code C over
F,. Forag, 1< g <min{n—k,k—1}, C is a g-th MDS code if and
only if the matroid M[G) is a (g — 1)-paving matroid.

References
[1] A. Barg, The matroid of supports of a linear code, Applicable Alge-

bra in Engineering, Communication and Computing, 8 (1997) pp.
165-172.

- 198 =



2]

[3]

[4]

[5]

[6]

8]

9]

C. Greene, Weight enumeration and the geometry of linear codes,
Studies in Applied Mathematics 55 (1976) pp. 119--128.

T. Kasami, T. Tanaka, T. Fujiwara and S. Lin, On the optimum
bit orders with respect to the state complexity of trellis diagrams
for binary linear codes, IEEE Trans. Inform. Theory 39 (1993) pp.
242-245.

F. J. MacWilliams, A theorem on the distribution of weights in
systematic code, Bell Syst. Tech. J. 42 (1962) 654.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, North-Holland, Amsterdam 1977.

J. G. Oxley, Matroid Theory, Oxford University Press, Oxford,
1992.

S. Rajpal, On paving matroids and a generalization of MDS codes,
Discrete Applied Mathematics 60 (1995) pp. 343-347.

S. Rajpal, On binary k-paving matroids and Reed-Muller codes,
Discrete Mathematics 190 (1998) pp. 191-200.

M. A. Tsfasman and S. G. Vladut, Geometric approach to higher
weights, IEEE Trans. Inform. Theory 41 (1995) pp. 1564-1588.

[10] V. K. Wei, Generalized Hamming weights for lincar codes, /IEEE

Trans. Inform. Theory 37 (1991) pp. 1412-1418.

[11] V. Wei, Generalized Hamming weights; Fundamental open prob-

lems in coding theory, Arithmetic, geometry and coding theory (Lu-
miny, 1993) pp. 269-281.

[12] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.

— 199 —



Extendability of linear codes over finite fields

Tatsuya Maruta
Department of Information Systems, Aichi Prefectural University
(BRI KE HEEFER HHER)
Nagakute, Aichi 480-1198, Japan
E-mail: maruta@ist.aichi-pu.ac.jp

Abstract
We survey classical known results and recent new results about extendability of
linear codes over finite ficlds. The geometric method used to prove most of recent
results is also shown.

1. Extension theorems and their applications

Let C be an [n, &, d|, code, that is a linear code over GF(q) of length n with dimension
%k whose minimum Hamming distance is d, where GF(q) stands for the finite field of
order ¢. The weight distribution of € is the list of numbers A; which is the number of
codewords of C with weight i. The weight distribution with (Ag, A4,...) = (1,¢,...} is
also expressed as 0'd® - ... We only consider non-degenerate codes having no coordinate
which is identically zero. Two [n, k,d|q codes C; and C; are equivalent if there exists a
monomial matrix A with entries in GF(q) such that C; coincides with C,M = {cM | ¢
e}

The code obtained by deleting the same coordinate from each codeword of C is called
a punctured code of C. If there exists an [n + 1,k,d + 1], code C' which gives C as a
punctured code, C is called extendeble (to C') and ¢’ is an extension of C. C is doubly
ertendable if there exists an extension of C which is also extendable. In this section we
survey known results about extendability of linear codes over GF(q).

Obviously every [n,1,d], code is extendable. And an [n, 2, d]; code C is not extendable
iff n = s(g+ 1) and d = sq for some integer s ([8]). It is well known that every [n,k,d]»
code with d odd is extendable by adding an overall parity check. So, we mainly consider
non-binary linear codes with dimension k& > 3.

The following theorems are generalizations of the fact that every binary linear code
with odd minimum distance is extendable.

Theorem 1.1 ([4],(5]). Let C be an [n,k,d], code with gcd(d,q) = 1 such thati= 0 or
d (mnod q) for all i with A; > 0. Then C is extendable.

Theorem 1.2 ([12]). Let C be an [n,k.d|, code with ged(d,q) = 1, ¢ = p", p prime.
Then C is extendable if
E Ai=q"",

iZd(mod p)
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Theorem 1.1 was first proved for ternary linear codes by van Eupen and Lisonek [2]
using quadratic forms. Extension theorems can be used to construct new codes from old
ones or to prove the nonexistence of some linear codes.

Example 1.1. (1) [¢%,4,9° — q — 1], codes are extedable by Theorem 1.1 (see [4]).

(2) The Golay [11,6,5]3 code has the unique weight distribution 0!5!32G!32833091101)24
and is extedable by Theorem 1.1.

(3) A [52,7,33]4 code found by Gulliver with weight distribution

01 339363446835144336936371991384683928504074l 4 1323742 ] 24843144344234 454294939

is extedable by Theorem 1.2.

(4) It is not so difficult to prove the nonexistence of [406, 5, 304]4 codes but for [405, 5, 303],
codes. If a [405,5,303]; code exists, then it can be shown that A; = 0 for all j ¢
{303,304, 319, 320}. So such a code doesn’t exist by Theorem 1.1.

We pose the following conjecture improving Theorem 1.2:

Conjecture. Let C be an [n, k, d], code with ged(d,q)=1, ¢ = p", p prime. Then C is

extendable if
Z A < g5 2(2¢ - 1).
iZd(mod p)

Simonis, who originally proved Theorem 1.2, also showed that the above conjecture is
true for ¢ = 3,4 ([12]). The next theorem partially corroborates our conjecture.

Theorem 1.3 ([9]). The conjecture is true when:

(1) h =1 (i.e. q is prime),

(2) g=4,

B)Yh=2withn=0, d= -1 (mod p), or

(A h=2withn=d=1 (modp) and A; =0 for all i =1 (med p), i £ n (mod q).

A [4,3,2]3 code has the unique weight distribution 0'2'23%46 satisfying 3.5 (moq 3) 4i =
3(2-3 — 1) and is not extendable. Hence the condition in our conjecture is best possible
for ¢ = 3.

When £ > 3, we can get the following result.

Theorem 1.4 ([9]). Let C be an [n,k,d], code with gcd(d,q) = 1, ¢ = p", p prime,
h > 3. Then C is extendable if

A< g 229 -1).
i#Zd(mod ph-1)

Let C be an [n, k,d]q code with k > 3, ged(d, q) = 1. Define

1 1
Po=_—7 2 A =73 > A
q qli,i#0 ? i#20,d (mod g)
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We call the pair (®g, ®;) the diversity of C. Theorem 1.1 implies that every [n, k, d], code
with ged(d, q) = 1 is extendable if &, = 0. When d = —1 (mod g), there are many lincar
codes satisfying A; = 0 for all ¢ # 0, —1 (mod q), which are extendable by Theoremn 1.1
(e.g. Example 1.1 (1), (2)). The following theorem is a stronger resnlt than Theorem 1.1
when d = -2 (inod ¢).

Theorem 1.5 ([10]). Let C be an [n,k,d]y code with diversity ($o,®1), k23, d = -2

(mod q) such that A; =0 for all i £ 0,—1,—2 (med q) for odd q 2 5. Then

(1) C is extendable.

(2) (B9, 1) € {(Bk—2,0), (O-3,2¢""2), (B—2+ (p— 2)¢* "2, 2¢*"2) Y U{(Ok—2 +ig* 2, (¢ -
o) |11 2 1) whoro 0y = (/4T = V(0 1), 0= 01/2.

(3) C is doubly extendable if (<D0,(I>|) # Or_2 +(p—2)g*2 2q" 2).

Example 1.2. (1) Let C be a [¢° — 1,4, — ¢ — 2], code with odd q 2 5. Then it can

be easily verified that A; =0 foralli € {q*> —q -2, - q—-1,¢° — q,¢° - 2,¢* = 1}.

Hence, applying Theoremn 1.5, C is extendable. Actually C is doubly extendable since

every [¢%,4.4* — q — 1], code is also extendable.

(2) Let C be a {q,3, g — 2], code with odd ¢ > 5. Since C is MDS, the weight distribution

is uniquely determined with diversity (6, + (p — 2)q,2q). Applying Theorem 1.5, C is

extendable. But it is well known that C is not doubly extendable (there is no [g+2, 3. ¢],

code).

(3) [¢*2 - 2,k,¢*! — ¢*~2 ~ 2], codes are doubly extendable (diversity (8y_3,2¢"~2)).

(4) Applying Theorem 1.5, the nonexistence of codes with parameters [105, 4, 83]5 and
[205,4, 163]5 was recently proved ([7]).

For an [n, k,d|, code C with a generator matrix G, the residual code of C with respect
to a codeword ¢, denoted by Res(C, ¢), is the code generated by the restriction of G to the
columns where ¢ has a zero entry. The next theorem is the only one with the condition
g|d for general k.

Theorem 1.6 ([8]). An [n,k,d]q code C is not extendable if q divides d and if Res(C,¢)
isen [n—d, k- 1,d/q|, code for some ¢ € C of weight d.

In Section 2 we give a survey of recent results about the extendability of ternary linear
codes. In Section 3 we give a geometric method used to prove most of the results obtained
by the author. A geometrical proof of Theorems 1.1 and 1.2 is also given to demonstrate
our approach.

2. Extendability of ternary linear codes

In this section we give a survey of known resuits about the extendability of ternary
linear codes from [11].

Theorem 2.1. Let C be an [n,3,d]3 code with diversity (9o, ®1), ged(3,d) = 1. Then

(1) ((I)Oe (I)l) € {(4s0)9 (le 6)9 (4s 3)e (47 ﬁ)o (79 3)}
(2) C is extendable if (Po, Py) € {(4,0),(1,6), (4,6).(7.3)}.
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(3) C is extendable iff 3 Ai > 0 when (g, Py) = (4,3).

d<i=d(mod 3)

Example 2.1. (1) [3,3,1]3 codes are unique up to cquivalence. A [3,3,1]3 code is
extendable, for the weight distribution is 011621238 (diversity (4,6)).

(2) There are two [24, 3, 1G] codes up to equivalence ([2]). One with weight distribution
0'16'217'2182 has diversity (I,6) and the other with weight distribution 0'16'8188 has
diversity (4.0).

(3) There are three [16, 3, 10]3 codes with diversity (4,3) up to equivalence ([2]). The
codes with weight distribution 0102111128142 or 0102115126152 are not extendable
but the one with weight distribution 0'10'°11°128132 is extendable.

Theorem 2.2. Let C be an [n,4.d]; code with diversity (b, 1), ged(3,d) = 1. Then
(1) (®o.®1) € {(13,0),(4.18).(13,9),(10,15),(16, 12).(13,18),(22,9)}.
(2) C is extendable if (Py. ) € {(13.0), (4, 18), (13, 18).(22.9)}.

(3) C is not extendable if 3 A; < 6 when (g, ¥y) € {(13,9),(10, 15),(16,12)}.
d<i=d(mod 3)

Example 2.2. (1) [9,4,5]3 codes arc unique up to equivalence. A [9,4,5]3 code is
extendable, for the weight distribution is 0153662181892 (diversity (13,0)).

(2) There are three [8,4,4]3 codes up to cquivalence ([2]). A [8,4,4]s code with weight
distribution 0'4205326871687 s extendable (diversity (4,18)) but the one with weight
distribution 0'4%'5'96328" is not extendable (diversity (16,12), 3y iz dmod 3) Ai = 0)-
It can be proved that the other [8,4,4]3 code with weight distribution 0'4%25246207886
(diversity (10,15), Zd(:’sd(mm] ) Ai = 8) is not extendable.

Theorem 2.3. Let C be an [n.5,d)s code with diversity (Po, ®1), ged(3,d) = 1. Then
(1) (P, ®y) € {(40,0), (13,54), (40,27), (31,45), (40,36), (40,45), (49,36), (40,54),
(67,27)}.
(2) C is extendable if (Dy, ) € {(40,0),(13,54), (40, 54), (67,27)}.
(3) C is not extendable if > A; < 18 when (Lo, ®y) € {(40,27), (31,45),

d<i=d{mod 3)
(40,45), (49,36)}.

(4) C is not extendable if > A; < 24 when (g, ©)) = (40, 36).
d<i=d(mod 3)

Example 2.3. (1) [10,5,5]3 codes are unique up to equivalence. A [10,5,5]3 code is
extendable, for the weight distribution is 0157265080920 (diversity (40,0)).

(2) 1t can be prooved that the [49, 5, 31]3 code found by Bogdanova & Boukliev ([1]) with
weight distribution 0'31932523372368402°412 (diversity (40,27), 3" ;= dqmoa 3) Ai = 20)
is not extendable.

Theorem 2.4. Let C be an [n,6,d)3 code with diversity (®o, ®1), ged(3,d) = 1. Then
(1) (9o, ®,) € {(121,0). (40,162), (121,81), (94,135), (121,108), (112,1206), (130,117),
(121,135), (148,108), (121,162), (202,81)}.
(2) C is extendable if (o, &) € {(121,0), (40, 162), (121, 162). (202, 81)}.

(3) C is not extendable if > A; < 54 when (Py, ®)) € {(121.81), (94,135).
d<i=d(mod 3)
(121,135), (148,108)}.
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(4) C is not extendable if 3 A; < 72 when (Do, ®,) € {(121,108), (112,126),
d<i=d(mod 3)
(130,117)}.

Example 2.4. A [200,6,130]3 code found by Gulliver ([3]) is extendable, for the weight
distribution is 0'130'4413122413264133'1213432139321406414232144%148%150%152* (diver-
sity (40,162)). See also Example 2.5.

For general k > 3, the following theorem can be proved.

Theorem 2.5. Let C be an [n, k,d]s code with diversity (o, ®1), k 2> 3, gecd(3,d) = 1.

(1) C is extendable if (B0, ®1) € {(6k-2,0), (0x—3,2-3*72), (6k-2,2 3*"2), (k-2 +
3k—2,3k—2)}.

(2) C is doubly extendable if (®g, ®,) € {(0-2,0), (Br—3,2-3*72), (r_2+3%~2,3%-2)}
whend =1 (mod 3).

(3) C is extendable if &g + ¢, < Or_2 + 32 or G+ P, > O_a+2-32

Example 2.5. A [200,6,130]3 code in Example 2.4 is doubly extendable.

3. A geometric method

We denote by PG(r, ¢) the projective geometry of dimension r over GF(q). A j-flat is
a projective subspace of dimension j in PG(r, ¢). 0-flats, 1-flats, 2-flats, (r — 2)-flats and
(r — 1)-flats are called points, lines, planes, secundums and hyperplenes respectively as
usual. We denote by F; the set of j-flats of PG(r,q). Note that the number of points in
ajflatis 0; = (¢ - 1)/(g - 1).

Let C be a non-degenerate [n, k,d], code. The columns of a generator matrix of C can
be considered as an n-multiset of ¥ = PG(k - 1, q) denoted also by C. We see linear codes
from this geometrical point of view. An i-point is a point of ¥ which has multiplicity i
in C. Denote by 79 the maximum multiplicity of a point from X in € and let C; be the
set of i-points in £, 0 € i < 4. For any subset S of ¥ we define the multiplicity of S
with respect to C, denoted by me(S), as

To
me(S) = Y i|SNCil,

i=1
where |T| denotes the nunber of points in T for a subset T of £. Then we obtain the
partition £ = |J]°, Ci such that

n me(E),

n—d = max{me(n)|w€ Fr_a}

Conversely such a partition of ¥ as above gives an [n, k,d], code in the natural manner
if there exists no hyperplane including the complement of Cp in £. An f-set F in
PG(r,q) is called an {f,m;r, q}-minihyper if m = min{|F N A||A € F.-1}. So Cp forms
a {0r—1 — n,0k—2 — (n — d); k — 1, ¢}-minihyper when v = 1.
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Since (n+ 1) = (d + 1) = n — d, we get the following.

Lemma 3.1. C is extendable iff there exists a point P € ¥ such that m¢(w) < n—d for
all hyperplanes © through P.

Let £* be the dual space of ¥ (considering Fx_2 as the set of points of £*). Then
Lemma 3.1 is equivalent to the following:

Lemma 3.2. C is extendable iff there erists a hyperplane Tl of ©* such that

NNcC{x € Fia| me(r) <n-—d}.

iFrom now on, let C be an [n, k, d], code with ged(q,d) = 1. We denote by F; the set
of j-flats of X*, so .7-'; =Fi_2_;.0<j < k-2 Wedefine

F = (7€ Fp_2|me(n) #En—d(mod q)},

Fo = {mé€ Fr_2|me(n) =n (mod q)}.
L = F\F.

Note that ®g = |Fy|, @1 = |F}|. Then F forms a blocking set in £* with respect to lines
which meets every line in *.

Lemma 3.3. FNL#Y forall LeF;.

Proof. Suppose FNL =0, L = {my,...,mg} € F. Then my,..., 7y are the hyperplanes
through L € Fi_3 in £ with m¢(m;) = n — d (mod q). Since Y°_j(me(m;) — me(L)) +
me(L) = n, we get n — d = (mod g). This contradicts that ged(d,q) = 1.

Most of the theoremns preseuted in Section 1 can be proved investigating the geometrical
structure of F. We give elementary proofs of Theorems 1.1 and 1.2 from our geometrical
point of view. Note that |{m € Fr_a | me(n) = i}| = Au_i/(g—1) (0 £ i < n-d). So,
the condition ”i = 0 or d (mod ¢) for all # with A; > 07 in Theorem 1.1 is equivalent to
"me(n) =nor n—d (mod q) for all # € Fr._»".

The following letnmas give characterizations of hyperplanes. Let S be a proper subset
of £ = PG(r,q).

Lemma 3.4. S is a hyperplane of X iff every line in £ meets S in one point or in g+ 1
points.

Proof. Assume that every line in ¥ meets S in one point or in ¢ + 1 points. Let Iy be
a line in X. Then we can find a point Qp € F on lp. Let §;_, be a (j — 1)-flat included
inS, 1< j<r—1. Taking a line {; which is skew to §;~1, we can get a point @Q; € S
(on ;) not on &;_,. Since every line through @Q; and a point of §;_; meets S in g+ 1
points, we get §; = (Q;,8;-1) € F; included in S. Inductively, we get a hyperplane é,_,
included in S. If a point Q@ € S not in §,_; exists, then we have S = (@,6,—,) =X, a
contradiction. Hence we obtain S = §,._,. The converse is trivial. (]

Lemma 3.5 ([6]). S is a hyperplane of £ iff |S| = 0,—, and S is a blocking set with
respect to lines in 1.
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Proof of Theorem 1.1. By the condition we have F1 =0, so F = {7 € Fr—2 | m¢(n) =
n(mod ¢)}. Take a seccundum 6 in ¥ = PG(k -1, ¢) with m¢(8) = ¢. Let ¢ be the nunber
of hyperplanes in F through é and let b be the number of the other hyperplanes of
through 4. Then we havea+b=¢+1=1(mod ¢) and (n —t)a+ (n -d—t)b+t=n
(mod g), so that d(a — 1) = 0 (mod q). Since ged(d. ¢)=1. we obtain a = 1 (inod ¢).
whence a = 1 or ¢ + 1. This implies that every line in the dual space £* meets F in one
point or ¢ + 1 points. Applying Lemma 3.4, F formns a hyperplanc of £*, whence C is
extendable by Lemma 3.2, O

Proof of Theorem 1.2. We put
F':={n € Fr_a | me(7) #n —d (mod p)}.

Since F C F’, F’ forms a blocking set with respect to lines by Lemma 3.3. The assump-
tion 3z gmod py Ai = ¢*~" implics that |F’| = 0_s. It follows from Lenuna 3.5 that F’
is a hyperplane of X*, whence C is extendable by Lemma 3.2. ]
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On Association Schemes with A. V. Ivanov’s Condition

H= S P R
HEH il

1 TEHEEER

X 2fi¥ n OFRERLTS. X = (X, {Ri}ocicd) 7 7 A d @ symmetric
association schemes &3 5.

A ' RIS BBERETE T4, A= (Ag, A)...., Ay) THEEE R LD algebra
&9 5. A % association scheme X = (X, {R;}oci<a) @ Bose-Mesner algebra L IT:
£. {Ei}ogica & A O primitive idempotents DR LT D (£ = 1J).

(A()eAI!"'rAd) = (EO,E],...,E({) P
THINEZTA X d+ 1 OIEHITH P & X = (X {Ri}ocica) P st cigenmatrix &
5. —F.

(Eo,E], PPN E,;) = ;—(Ao,A], ce ,Ad) " Q

TRINDZHAX d+1 DIESTTH Q & X = (X, {Ri}ocica) P 2nd eigenmatrix
Q LI,
P, Q DL KRDMN TH 5

1 & . ky
1
P = (pij)ogica = | . , ki 13 R; @ valency.
0<,<d : Pij

1
1 my ... my
1

Q = ((],-j)ogisd = . , ;= rank Ei.
0<j<d : q!J

1

P DITETNEH 4 {Edocicas {Aitogica TL YT v 7 A3NTVE. Q DITLFIIX
&% {-‘L’}()Sisd- {Ei}OSiSd TA YT v 7 A3INTWES,
P & Q ORI
PQ=QP=nI

YD, E£72,Q D (i.j) K qiy (& P D (5,i) W5 p;; & multiplicity m; &
valeney k; #F IO TRO L HI2LINS (1]

m;
q4ij = —%Pj.i

k;
ALY LD,
- 207 —



{Aj}ocicer & Ao = {0} THS {0,1,....d} DFWET S, Rp; = Ugea,Re T
EHFTH. X = (X, {Ra, }ogj<ar) D association scheme DRMFEHLTLE, X =
(X, {Ra, }ocj<a) & X = (X, {Ri}ocica) P fusion scheme LIE5.

—H, Ao = {0} TH 5 {0,1....,d} DEZEDFH {Aj}ocice (2 d < d) 125
LT, X = (X, {Ra, Yo<j<a) #* fusion scheme (2% % &, X = (X, {Ri}ocicd) %
amorphous THHLFI.

ROFEMIE, 5 2 617z association scheme X = (X, {Ri}o<ica) 123 LT, MEF
fusion scheme AWK TEHDHERL TS,

Theorem 1.1 (E. Bannai and M. Muzychuk) X = (X, {Ri}o<ica) % symmetric
association scheme £ 4 5. {Aj}oci<ar (Ao = {0}) % {0,...,d} DHFHELT 5.
SOLE EED 0,6 (1 < .l < &) 123 LT, 175 P O (Ae,, Ag,)-block 55
constant row sum (2% 5 £ 2 {0,...,d} DFHW {Aj}ocica (Do = {0}) PFIET
Bt X =(X, {Ra, }ogica) 13 X = (X, {Ri}ogica) D fusion scheme \Z7% 5.

CHOILETH Q OEFETHEND LRIILS:

Corollary 1.2 52 617z {0,1,...,d} D38 {Aj}ocica (Ao = {0}) IZH LT,
TEED 0,0 (1 <0,6<d)IXFLT, 175 Q D (A, Ar,)-block B constant row

sum l:&% e :J fJ: {0. 1 . ,d} 0)5}5‘5'] {Aj}OSde' (A() = {0}) ﬁgﬁETé .
Remark 1.3 Theorem 1.1 & Corollary 1.2 Tik~<6h 3 {0,1,...,d} DFH

{AJ'}USJ'Sd” {AJ'}OSJ'Sd’ li, {Aj}OSjsd’ 75*’—:1‘-71611.11!1’ {Aj}‘)Sde' o)ﬁ::ﬂf‘i unique
IHRES.

2 Edwin van Dam’s Results and A. V. Ivanov’s
Conjecture

ik, Edwin R. van Dam KI3ZX [3] T, &7 7 7% 4 20D strongly regular
graphs 1250 H3 2 FHUES R 2R E LT 5. van Dam KDF{FIIZ L UL, ROBE
HHNE:

Theorem 2.1 (Edwin R. van Dam) 5E£7 7 7 % 4 2D strongly regular graph i
FHTHE, KD I 2051 THEANS:

(i) amorphous association scheme,
(ii) KD 1st cigenmatriz P %32 symmetric association schemes:

ky ko ks Ky
St T2 T3 Ty
ry Sa 83 Iy y
™ 82 T3 Sy
Ty T2 S3 84

h-U
il
okt et
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(iii) BHEFTHE LTROELFELST7:
(1 kl kg k;; A.;\

1 sy s r3 ry
1 sy 10 83 ry
P=11 s r ry s
1 ™y 8 83 Iy
1 r, 83 r3 sy
1 ry, ro s3 84 )

\

Theorem 2.1 (iii) (RN B1T7H] P AZIEHFFTHI TRV DT, association scheme X -
2nTVRY, o T, van Dam KDOR T association scheme (ZHIRT 2 &, (i),
(i) PHEDAEND.

F 7z, van Dam Kl (ii) FFFII2WT, kD 2 2DOFFH LTV 5:

{1 v—-4 1 1 1

1 -4 1 1 1
P=|(1 0 -1-1 1], (1)
1 0 -1 1 -1
\1 0 1 -1 -1
[1 2% —4-3(2%)-3(2") 22 +2'+1 2% 4241 2242t 41
1 —4-3(2Y) 1+2 1+2 142
P = |1 —44 2 142 1-2 1-2 2)
1 -4+ 2 1-2¢ 1+2 1-2
\ | —4 + 2 1-2 1-2 1+ 2

(2 1 t=3 1T LTROITH %1 5:

1 3276 273 273 273
1 -52 17 17 17
P=|1 12 17 -15 =15 |. 3)
1 12 -15 17 -15
1 12 -15 =15 17

(D) IELRTF 78 L11(2) D wreath product TH 5. (3) (1 GF(2?) Lns 5
A d = 45 ? cyclotomic scheme @ fusion & UL THEM &4 5. (1) {3 imprimitive
association scheme T, (3) {3 primitive association scheme DI TaH 5.

1991 SEXL, Moscow #LZP? Viadimir TREBIAL S EiG 0 |EFR SR A B S /e,
Z DK, AV.Ivanov (RO TFEMELZ H L7
A.V.Ivanov’s conjecture: X = (X, {R;}o<ica) % symmetric association scheme
ET 5B ALED i(# 0) 123 LT ;= (X, R;) #F strongly regular graph & §5., 2
Nk &, X =(X,{Ri}ocica) {Z amorphous TdH 5 H ?

van Dam KO#FERIL, (1), (3) DRFHFETHDOT, TOTRMEDRBUI R T
wh,
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F 412, A.V.lvanov's conjecture 2 HIZEET 57D, ROEME% A V.Ivanov's
condition & M-5:

A.V.Ivanov’s condition: X = (X, {Ri}o<ica) & symmetric association scheme & ¥
5.0 ie{l,.... d} 128 LT, T = (X, R;) 13 strongly regular graph Té 5.

e DML L TYHRILEL goal IS classification THh 5. ROBEULEKICH
T 5

B#9: A.V.Ivanov’s condition % #7- 7 34¥5 association schemes % $$8 4 &.

A.V.lvanov's condition % ifi7= 3 1F# association scheme X' T, van Dam K O&;
o (i) DIKRIZH S non-amorphous association schemes 372 SAHFET LD
M EFRED, S1IIELOWIIHFEL L vaAh. £ 72, non-amorphous association
schemes @ 1st cigenmatrix P IZED L ) L E LTV 5007 (ZHEADH 5.

3 ER

A ORBRORUE, A V.lvanov’s condition % 2 symmetric association scheme @
1st eigenmatrix P @ shape TéH 5. ZOHiLRE, X = (X, {R:}o<i<a) 13 A.V.Ivanov's
condition % itz ¥ L IHET 5.

X = (X, {Ri}o<ica) P lst cigenmatrix P:

1k ... ks

1

. Po

1

iZBWT, PR % P DFEHEREMLR, P, OFIXZ P L%
po=[p1s---.pd|

EBL<.

Fact 1. % i (i=1,....d) IZHLT, X = (X,{Ro, Ri.(X x X) — Ry — R}}) 1%
strongly regular graph TH 5556, ERE P, O&F p; (1 <i <d) IIETHE 2 fifi
ﬂ@fﬁ {l,',b,' 7&‘5]{/:/5;. C.V)ﬁﬁli F,‘ = (X, Ri) O)Eﬁﬁﬁ a;, b,' ‘:_'g('é-é

Fact 2. Strongly regular graph @ complement & strongly regular graph T& 5.
Fact 3. P, P, % lst cigenmatrix P &3 5.

P =U,RU;

LT EBRATH U Uy BFET B %5, P~P, LT 5.

Factd. Po DBHICBING a, b I ZWL AT LR LT LN TELDOT, LELS
a; & b DFMEANBKZTEN,
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Fact 3 & Fact4 &0 P O¥24THIZ

1 kl k'l e kd
1 a a2 ... y
p=|1
1
ELTEW. Fact 1, Fact 3 & Fact4 £ ) P O 25IADEEL LT LW,
1 kl k,(
1 Q)
P= Q)
b
\1 b /
INED, PRRDAAEESLMEL TV,
( 1 kl kz kd
1 a a3 ... aq
P= 1 [¢2]
1 &
1 b

4 HBR

(4)

ZOfiTIE, van Dam KOER DR E A V.Ivanov's condition Z§F2#4 7 7 A
d € 6 ® synunetric association schemes D3 HFEY: %X 5.

Proposition 4.1 X = (X, {Ri}o<i<a) & A.V.Ivanov’s condition %2 symmetric
association scheme &3 5. Non-amorphous associelion schemes THDHRD 2 2D

ERARYIDAFALY B

(1)
1 kl ’\72 k-g k'z
1 a, az|as L)
1 b[ b2 a2 bg
P=1::
1 b] b2 bg ady )
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8L,
ki(ay + (d - 2)?)

b T=DE-4dn-1)+4(n-1)—k,’
_ _(l1+1
a2 = d-1"

d=1)((n=-1)d2-dd(n-1)+4(n—1) - k)’
fi = (n=1)d+k —2n+2)ay+(-n+k +1)d®
+(4Tl - 3k| - 4)d + 3k| —4n +4,

T @-oF
(=1 —4dn-1)+4(n—-1) -k ,
m = (d—1)(d-2)? (2<i<d),
L Tl"-'kl—l
by = d-—1 ~

a, 13KD 2 FBRRXOMTH 5.
(—n+1)ay? =2k a) —n(—n+k;+1)d>+4n(—n+k 4+ 1)d—5kyn+4n’+ k2 —dn = 0.

(2)

(1 k ky|ks ... .. ... k;,w
1 G a|daz ... ... ... Qs
1 b] [¢2)] b3 b3
1 b by|bs as
P= . . . s
\l b b2 as b3/
BL,
b = _k.((d—3)a|+(d—2)2),
N
0 = d=3(a+1)
&P -5d+7 "’
by _ (d-3)f
(d2—5d+7)g|’
4 = ——u*l
E-=5d+7
by = #,
(d* = 5d+ T)¢n
my = (d-—3)my, my = ... =1y,
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k2

ks

S

fa

q

_—(n=-1)d+({@dn+k —4)d—dn—3k +4
(@ —5d+ T)(d—2)? ’

(d = 3)k
(d—2)2°
(n—k; — 1)(d — 3)?
d2-5d+7
—ky = n—k-1
d2—-5d+7

(—k1d2 + (—n + 6k; + l)d +2n - 9% - 2)0,1
+(n—ky — 1)d® — (Tn — 6k; — 7)d?
—(11k; — 16n + 16)d — 12n + 5k; + 12,
(d—3)((n — 1)d® + (=5n + 5)d + 6n + k; — 6)a,
+hd® — (n+7ky — 1)d® + (4n + 18k, — 4)d
—4n — 17k + 4,
(n—1)d® — (dn + k; — 4)d + 4n + 3k, — 4.

o1 13RD 2 FRADHTH 5.

—(n—1)(d - 3)as? — 21(d — )y + n(n — ky — 1)
+(—4n® + dn + k3 + 3kin)d — kyn = 3k3 —dn + 4n? = 0.

Remark 4.2 Proposition 4.1 @ 1st eigenmatrix P DB, F4ROBHhHHHEL

Twb.
(i)

L ky kp|ks oo ka)
1 a aqx|a3 ... Qg
1 bl (1] b3 ‘e bd
pP= 1 bl bg s bd ?
\ 1 b] bg b3 aq /
1 ky kol ks ... kg
1 @y a2 |az ... aq
1 b ax | by ... by
P=1T"8 8 [0 Py
1 b] bg a3 bd /

Remark 4.3 Proposition 4.1 Td=4 &35 &, (i), (ii) DRIE—FT 5. #€-C,
Proposition 4.1 {¥ van Dam KO#&HF (Theorem 2.1 (ii)) D—HLIZZ 2T 5.

Remark 4.4 (2) I22WT 3<t< 10 DRETEHET S L, k(= 2% —4-3(2%) -
3(2Y), ka(=22 + 2! + 1) DEIZKRD L H 124 B,
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ky ko
202 73
3276 273
29596 1057

249660 4161
2047612 16513
16579836 65793
133429756 | 262657
0 | 1070593020 | 1049601

Proposition 4.1 (i) Td=4 £ BWTIarEa—-3 2o TRT A L, kDFED
&9 %87 2 — % %FD strongly regular graph #*Bh s, HL, 75 (1) TRAT
EHHEBRVTHEL TS, EOFHIRDOMY TH 5. Proposition 4.1 (i) T
30 =(X,R) EZ2DMW T =(X,R) (i #1) ® 2 HFD strongly regular graph
DT A—F (nkA\p) BBNE. 22T, Ty = (X, Ry) T B85 A— 5 #
ky, A, i b ] g, ChPHDNRGA—5 % kg,/\g,[l.g EBVnTnA,

=D 00 10N
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n ky A i k2| A2 |
6348 4616 | 3340 | 3400 || 577 | 56 | 52
1701 500 [ 103 | 165 || 400 | 100 | 92
1750 636 | 104 | 252 || 371 | 84 |77
2160 1016 | 448 | 504 || 381 | 72 | 66
2738 1564 | 870 | 924 | 391 | GO | 55
5070 3836 | 2890 | 2940 || 411 | 36 | 33
3675 2672 | 1930 | 1976 || 334 | 33 | 30
1800 1028 | 568 | 612 || 257 | 40 | 36
4096 || & 3276 | 2612 | 2652 || 273 | 20 18

875 304 78 | 120 (| 190 | 45 | 40
1701 1088 | 682 | 720 || 204 | 27 | 24
5887 5232 | 4646 | 4680 || 218 9| 8
1058 604 | 330 | 364 || 151 | 24 | 21
1728 1256 | 904 | 936 || 157 | 16 | 14
3730 3260 | 2830 | 2860 || 163 8| 7
2205 1856 | 1558 | 1584 || 116 71 6

300 92 10 36| 69| 18|15

512 &292| 156 | 180 | 73| 12|10
1156 924 | 734 | 756 || 77 G| 5

507 368 | 262 | 280 | 46 5] 4

162 92 46 60 | 23 41 3

50 28 18 12 7 0] 1

243 176 | 130 | 120 22 1] 2

288 164 | 100 84 41 41 6

676 540 | 434 | 420 | 45 2 3

375 176 94 72 || 66 9112
1445 1216 | 1026 | 1008 || 76 3| 4

722 412 2461 220 || 103 | 12| 15
1200 872 | 640 | 616 || 109 8|10
2646 2300 | 2002 | 1980 |[ 115 41 5
4375 3888 | 3458 | 3432 || 162 5| 6

768 236 1 100 6O || 177 | 36 | 42
1000 444 | 218 | 180 | 185 | 30 | 35
1352 772 | 456 | 420 193 | 24|28
1944 1340 | 934 | 900 | 201 18 | 21
3136 2508 | 2012 | 1980 | 209 | 12| 14
6728 6076 | 5490 | 5460 || 217 6| 7
2883 2006 | 1534 | 1496 || 262 | 21| 24
2178 1244 | 730 | 684 | 311 | 40| 45
6480 5456 | 4600 | 4560 [ 341 16 | 18

&1 (2) THABHATHS.

ETAN, IORIZBVTT = (X, R). Ti=(X.R) (i =2.3.4) PPERICFFET
% strongly regular graph (3 & DHEDATH 5.
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Proposition 4.5 X = (X,{R:}o<i<a) & A. V. Ivanov’s condition % ifi7-§i#:
association schemes CH4A 27 A d=6 £T5b. ZDLE, RDOEEEOANENS:

(i) amorphous association schemes,

(it) (i) and (ii) in Proposition 4.1.
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On The Association Schemes of
Type 11 Matrices
Constructed on Paley Graphs

Rie HOSOYA
Graduate School of Natural Science and Technology

Kanazawa University
Kakuma-machi, Kanazawa-shi, Ishikawa 920-1192, JAPAN

According to Jaeger, Matsumoto and Nomura, there is a mapping A from
the category of type Il matrices W to that of association schemes. The as-
sociation scheine N (W) obtained from W somehow controls the structure of
W; W is decomposed into a generalized tensor product if and only if N(W) is
imprimitive. However, we have only few examples of type II matrix calculated
for known type II matrices and it is yet to be settled what sort of association
schemes arise as M (W). In this paper, we study N (W) for the type II matrix
W constructed on a Paley graph. We show that if the size of the type II matrix
W is greater than 9, M(W) is a trivial association scheme.

1 Introduction

Throughout this paper, M (i, j] denotes the (z, j)-entry of a matrix M and u[h]
denotes the h-th entry of a vector w. Let M be an m x n matrix whose entries
are all nonzero. We associate an n x m matrix M~ defined by the following.

. 1
Let I denote the identity matirx and let J denote the all ones matrix. Let
Mat,(C) denote the set of n x n complex matrices. W € Mat,(C) is said to
be a type II matriz if WW~ = nl. It is clear that if W is a type II matrix,
then the transpose W of the matrix and W~ are type II matrices as well.
The definition of type II matrices was first introduced explicitly in the
study of spin models. Sce [1, 7] for details.
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Example 1.1 (1) Let ¢ be a primitive n-th root of 1. Then the matrix
W € Mat,(C) defined by Wi, j] = ¢¢-DU-D is a type II matrix. W is
called a cyclic type II matriz of size n.

(2) Let a be a root of the quadratic equation t2 + nt + n = 0. Then the
matrix W € Mat, (C) defined by Wi, j] =1 + §; ja is a type II matrix.
W is called a Potts type II matriz of size n.

Let W € Mat,(C) be a type Il matrix. If 5,5’ € Mat,(C) are permutation
matrices and D, D’ € Mat,(C) are nonsingular diagonal matrices, then it is
easy to see that SDWD'S’ is also a type II matrix. We say that two type
II matrices W and W’ are type II equivalent if W' = SDW D'S’ for suitable
choices of permutation matrices S,S’ and diagonal matrices D, D’. It is clear
that this defines an equivalence relation on the set of type II matrices.

For a type Il matrix W € Mat,(C) and for 1 < %, < n, we define an
n-dimensional column vector u}’; by the following.

W h, i]
Wih, 5]

u,“; [h] =

Let
N(W) = {M € Mat,(C) | u,”; is an eigenvector for M for all 1 <1,j < n}.

It is known that A (W) is the Bose-Mesner algebra of a commutative asso-
ciation scheme. N (W) is called a Nomura algebra. Moreover, there exists a
duality map from NM(W) to N(W). N (W) is called the dual of N(W). We
often say N (W) has a dual (See Section 2 [5]).

We are intersted in the association schemes A (W) obtained from type
II matrices W. Suzuki and the author showed that W is decomposed into a
generalized tensor product if and only if (W) is imprimitive [5].

We are now interested in type II matrices associated with primitive asso-
ciation schemes. Well known examples are the following.

Example 1.2 (1) Let W be a cyclic type II matrix of size n. Then N (W)
is the Bose-Mesner algebra of the group scheme of cyclic group of order
n.

(2) Let W be a Potts type II matrix of size n > 5. Then N (W) is trivial,
i.e., Bose-Mesner algebra of the class 1 association sheme.

We study the Nomura algebra of a type II matrix constructed on a Paley
graph. Let ¢ be a prime power with ¢ =1 (mnod 4). The Paley graph P(q)
has as vertex set the finite field F,, with two vertices adjacent if and only if
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their difference is a non-zero square. It is strongly regular, with parameters
(¢.3(¢ — 1), 2(g — 5), 1(g — 1)) and their eigenvalues are given as

-1+ -1
(g-1), r=——p \/a, s=—:g‘/(_1.

Let I" be a strongly regular graph, and let A; be the i-th adjacency matrices
of I for i = 0,1, 2. For a matrix W = tgAg+t, A, + 124, (t; € C), Jaeger gives
a construction of ¢; for W to be a type II matrix (Sec Equation (33) in [6]).

We restate Jaeger's result for the case I' is a Paley graph P(q). Let P(q)
be a Paley graph over a finite field ¥, with ¢ = 1 (mod 4). The adjacency
matrix A of P(q) is defined as follows:

k=

B =

3

_ ] 1 ifz—yisasquare in F,
Alz.y] = { 0 otherwise

where z,y € F,. We construct a matrix W € Mat,(C) by the following.
W=t +t1A+t2(J -1 - A)

where ¢;'s satisfy the following equations.

ty = t7?,
S+ (r+1)2-s(r+ 1)t +1%) =1, (1)
to = —st; + (r + 1)t;! (2)

for (r,s) € {(#, _%@)} Note that r and s are eigenvalues of the Paley
graph P(q). We write t; = ¢,to = t~!. Jaeger showed that the matrix W
defined above is a type II matrix (See 3.4 in [6]). We say W is a type II matriz
constructed on a Paley graph P(q). Since —1 is a square in F,, A is symmetric.
Hence W is also symmmetric.

QOur main result is:

Theorem 1.1 Let W be a type II matriz constructed on a Paley graph P(q)
withq =1 (mod 4). If ¢ > 9, then N(W) is trivial, i.e., the Bose-Mesner
algebra of the class 1 association scheme.

Here we will first prove the above theorem for the case ¢ = p where p is a
prime by using the structure of Paley graphs. Then we show the theorem in
general by using only the parameters of Paley graphs.

According to A. Chan, the theorem holds for type II matrices constructed
on conference graphs, which are in a wide class of strongly regular graphs with
parameters (dm + 1,2m,m — 1,m), if m > 2. Note that a conference graph
becomes a Paley graph when 4m + 1 is a prime power. In fact we do not use
the condition 4m + 1 is prime power when we prove the theorem.
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2 The entries of type II matrices constructed
on Paley graphs

Let (r,s) = (%@, —1;3@) Then Equation (1) is equivalent to
1

v —s(r+ 1). )

» . 2 1 —
Then we may regard ¢ as a root of the quadratic equation x ;—\/vaa:%—l 0.

Let £ be the complex conjugate of t. We have tf = 1, in other words, t = t~.
Consider the garois group G = Gal(K/Q) of the minimal polynomial of ¢
over Q. There exists ¢ € G such that o(t) =t~! =L
By Equation (2), we have

t+t ==+

to = £1.

Here the choice of plus or minus sign depends on sign of r, s.

Equation (4) has in general four solutions in ¢, which can be obtained from
one of them by inversion or change of sign. We can obtain at most 4 kinds of
type II matrices depending on the value of ¢ for fixed r and s. We can, however,
verify that if one of them is obtained from the other by inversion or change of
sign of t, they are type II equivalent to each other, which means we have only
one type II matrix up to type II equivalence for given r and s.

3 The graph description of Nomura algebras

We restate the results of [7] for a type II matrix constructed on a Paley graph
P(q).

Let W be a type II matrix in Matx(C). Let I be a graph whose vertex
set is X x X. For two vertices (a,b) and (c,d) € X x X, we say that (a,b)
is adjacent to (c,d) if and only if the Hermitian inner product {w,4, Uca) 1=
> zex Uab(Z)Ucq is nonzero. The graph I' is said to be a Jones graph. Since
{¥qap, Uca) is nonzero if and only if (w4, u,p) is nonzero we obtain an undi-
rected graph T

Let Cy,Cl,...,Cy4 denote the connected components of a Jones graph T
Let A; be a matrix in Matx (C) with (a, b)-entry equal to 1 if (a,b) € C; and
to 0 otherwise.

Proposition 3.1 ([7] Theorem 5) The set {A; | 0 < i < d} is the basis of
Hadamard idempotents of N (W).
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From now on, we consider the case W is a type II matrix constructed on
a Paley graph P(g). Since W is symmetric the above proposition implies that
the set {A; | 0 < i < d} is the basis of Hadamard idempotents of /(W) and
we can get the dimension of AN (W). In order to prove that A (W) is trivial, we
only have to show that the number of the connected components of the Jones
graph for W is exactly equal to 2.

3.1 Basic properties of (ugp, e q)

Lemma 3.2 For any a,b,c,d € Fy, the following hold.

(ua,by uc,d) = (ua+k,b+k1 uc+k.d+k)
for allk € F,.
Let F; = F, — {0}.

Lemma 3.3 For eny a,b,c,d € Fy, the following hold.

(uu,ba uc.d) = (uaa,aba unc,nd)
-
for any square a € Fy.

Lemma 3.4 For any a,b,c,d € F, and for a primitive element g of F,
(Wb, Uca) = 0 if and only if (Ugagb, Ugega) = 0.

3.2 Connected components of I'(IW)

Let I'(W) denote the Jones graph for W.

It is trivial that {{a,a) € F, x F, | a € F,} generates a connected compo-
nent of I'(W). We write Cp := {(a,a) € F; x F, | a € F,}.

Let g = p® for a primne p and a natural number e, and let F, = {0,1,...,p—
1}. Let {ap = 1,11, .., .1} be a basis of F,, over F,,, and let g be a primitive
element of Fy.

Lemma 3.5 Assume that (g1, Ua, 1+a;) IS nonzero for i = 0,1,...,e — 1.
Then the set of vertices C} := {(k,1 + k) € Fy x Fy | k € Fq} is included in
the same connected component of the Jones graph I'(W).

Lemma 3.6 Assume that (ug,), Ua,,1+0;) and (Uo,1,U),1+4) are nonzero for all
i,i=0,1,...,e—1. Let Ch := {(k,k+ g*" ") |k € F,} fortl<h <p-1
Then the sets of vertices C},C%,...,C} ~! are included in the same connected
component of the Jones graph I'(W).
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Proof. We proceed by induction on h. For the case A = 1 the claim is true
because of Lemma 3.5. Suppose that the claim is true for the case h < m.
Because of the assumption (ug,1,%1,14¢) is nonzero and by Lemma 3.3 or
Lemma 3.4, we can see that (ug gm-1, Ugm-1 gm-1,,m) is nonzero. By Lemma 3.2,
(Ui ot gm—1, Ugqgm—1 kpgm-14gm) is nonzero for k € F,. This leads to that (k, k+
g™ 1) and (k+ g™ ',k + g™ + g™) are adjacent for each k € F,. Since the
union of the sets C1,Cj, ..., C:,_, is connected, Cy, is also included in the same
connected component. This completes the proof. [

Proposition 3.7 Let W be a type II matriz constructed on the Paley graph
P(q) under the notation above. If (1o 1, Ua,,14a;) and (Ug,1, U1,144) GTE RONZETO
foralli,i=0,1,...,e -1, then N (W) is trivial.

Proof. By Lemma 3.6, the sets of vertices C},C?,...,CP™" generate a con-
nected component of the Jones graph I'(W). We may write C, = C}UC?U- - .U
CP~'. Hence the Jones graph T'(WW) consists of two connected components Cy
and C). This implies the dimension of N (W) is equal to 2. Therefore N (W)
is trivial. [

4 Computations of (ug1,u12) and (ug 1, %1144)

Let t satisfy Equation (4). It is easy to see that (ug,u12) is a linear combi-
nation of 1,¢71, t2,¢t72,¢3,t4,¢t=4. Their coefficients are described in terms of
the quadratic residue character 7.

4.1 Expressions of (ug;,u;2) in terms of ¢,¢!
Let So = ¥zer, n(@)n(z — V)n(z — 2). If n(2) = 1, we have

1
(wo,12) = Z(g—3-S)t'+ g(q + 1+ Sp)t™1

1
8
1 2, 1 2, op-1, 1

+Z(q+5+52)t +Z(q—3—82)t + 2t +Z(q_9)’

If n(2) = —1, we have
! a, L —4, 043
(o1, U12) = g(q -3-S)t'+ g(q — T+ S)t™ + 2t

1 1 1

+Z(q +5+ S)t* + Z(q —-3-5)t7 2+ Z(q - 5).
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4.2 Expressions of (ug,u,14,) in terms of ¢,¢™!
Let S149 = Lzer, M(@)n(z — 1)n(z — 1 — g). If n(1 + g) = 1, we have

1 1 _ .
(20,1, U1149) = g(q —3— Sipg)t* + §(Q + 1+ St~ 2182

1 1 _ - 1
+Z((] - 3 + S]+g)t2 + Z(q b 3 — SH.g)t 2 +t 1 + Z(q - 1)

If n(1 + g) = —1, we have

8

1 1 1
+300-3+ Siig)t? + Z(q —3 =Sttt + yiCAn 1).

1 1 - -
(U0, U114g) = g(q +1 =St +2(g =3+ Syttt

5 Proof of Theorem 1.1 for the case g=p
In this section, we prove our main theorem for the case ¢ = p.

Lemma 5.1 Let W be a type II matriz constructed on the Paley graph P(p)
with a prime p=1 (mod 4). Then (ug,1,u,2) is nonzero.

Proof. Assume (up,,u;2) = 0. We may regard (uo,,u1,2) as a polynomial
in t and ¢! over Q, i.c., (ug 1,212} = f(t,t7!) where t and t™! satisfy Equa-
tion (4). By the assumption, we have

o(f(t,t™")) =0
for 0 € G = Gal(K/Q) which is defined in Section 2. Hence
f(t, ™) — o(f(t,t71)) = 0.--- (%)
Note that o(f(t,£7!)) is obtained by replacing ¢ with ¢! in (uq,1, u1,2)-

If n(2) = 1, Equation (%) is equivalent to

—}1(2 + S)(t2+t7) + %(4 +8)F20t+t"H)"! =0,
and this is equivalent to
2+ 3-pVP
1-p
Sy is not a rational integer for any prime p = 1 (mod 4). This contradicts

the fact that S; = ¥ cp, n(z)n(z — 1)n(z — 2) is a rational integer. Hence
(up,1, U1,2) is nonzero. The case n(2) = —1 is similarly proved. |

Se=-2F
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Lemma 5.2 Let W be a type II matriz constructed on the Paley graph P(p)
for a prime p with p > 9. Then (ug,1, U 144) s nonzero for a primitive element

g of F,.
Proof. Ifn(1+ g) =1, we have

S1+g is not a rational integer for any prime p =1 (mod 4) with p > 5. This
contradicts the fact that S144 = ¥,er, n(z)n(z — 1)n(z — 1 — g) is a rational
integer. Hence (ug,1,%1,144) is nonzero if p > 5. The case n(1 + g) = —1 is
similarly proved. [
Proof of Theorem 1.1

By applying Lemma 5.1 and Leimnma 5.2 to Proposition 3.7, we obtain the
result. [ ]

6 Proof of Theorem 1.1 in General

In this section, we show that (u,p, ucq) is nonzero for distinct a,b,c,d € F,
where ¢ = p® > 9 for a prime p and a natural number e. This implies that
Theorem 1.1 holds for ¢ > 9.

Proposition 6.1 Let W be a type II matriz of size | X If {wap, Uca) is
nonzero where a,b,c,d € X are distinct and | X| > 5, then N (W) is trivial.

Let t satisfy Equation (4). It is easy to see that {u, s, 2 4) is a linear com-

bination of 1,¢,¢71,¢2,¢72,3,¢73,t4,t~%. We can see that +¢t, +¢!, +3, +¢-3

appear when = = a,b,c, or d. Set Uy(t,t™!) := ¥,y ca w[[‘;ﬁ]l 3:

5}

,C
z,d

. Hence

we have the following.
(Uapy Uea) = Un(t,t71) + 1t? + bt ™2 + mut? + mat™ + n,

where 4+, +lo +my + mo+n = q. Then £U,,(¢t,t7') € {4¢t,4t71, 4¢3, 4¢3, t +
3tV 3t 4+t 20t +171), 6+ 383, 3t + 13, 2(¢ +13), £ + 3873, 3t + 73, 2(¢ +¢73), ¢ +
363,361 4+ £3,2(t71 + £3), £3 + 3t~3,3t3 + t3,2(¢* + t-3)}. The sign + depends
on that of ¢g.

Proposition 6.2 Let W be a type 1] matriz constructed on a Paley graph P(q)
for g =p* > 9. Then (usy, Usq) is nonzero for any distinct a,b,c,d € F,.
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Proof Letr = =28 — =M Gince t+ ¢! = +(r+1)"! and tp =
(r +1)(t + t~!), we can choose plus sign without loss of generality. Suppose
(Uap, Uea) = 0. (Ugp, Usa) can be regarded as a polynomial in t,t~! over Q,
so we can write f(¢,t7') = (uqp, Ueq). As we have seen in Section 2, there
exists 0 € G = Gal(K/Q) such that o(t) = t = t~!. By the assumption,
f(t~1,t) = 0. Therefore we have f(¢,t~') + f(¢t~!,t) = 0, which is equivalent
to

L+ L)+t + (my+me)(t + ™) + 2n = —U,(t,t7") = Uy (t™1,t).
Set | =1, + l, and m = m; + my. Then we have
B+t +mt +t7) + 2n = —Uy(t,t7Y) = Up(t™1, ), - (%)
where 4 + 1 +m+n = gq. Uy(t,t7') + Uy(t™1,¢) is one of the following:

4(t+t71), 4 +273), 2(t+t 1) +2(3+27%), (t+t )33 +7%), 3(t+t )+ (3 4+¢78).

Note that 4
2+t 2=(t+t1)2-2=—-_ -2
HE =Y = e R
8 6
B+t 3=+t -3+t ,
(t+ 7 =30+ = Ty ~ T
16 16

e+t =P+t -2= ~ +
(C+t) - 2= s ~ T

By plugging in these values to the equation (*), the left hand side of (%)
becomes the following.
4 16
M—— +1
(a7~ D+ e~
Multiplying %(1 +p°)* and putting m = ¢ —4 — [ —n, the left hand side of ()

is equivalent to

2+ p){~(2 - p°)(1 + p°)* — 2p°(1 + p°)® + 8p°(l + n + 1) — 16}.

+2} +2n.

Multiplying %(l + p?)4, the right hand side of () is written as follows:

Un(t,t™0) + U, (t1,t) RHS x1(1+p°)?
4+t —4(2+p°)(1 +p° +p*) +4
482 +¢73) 42 +p°)(3p* +3p°—1) +4

At +t7 )+ 2B +173) 42 +p)(p* +p°—1) +4
(E+t)+3E+t73)  42+p)(2p* +2p° - 1) +4
3+t )+ (B +177) —4(2+p°) +4
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Both sides of (x) become integers by multiplying 1(1 + p©)?, and the left
hand side is divisible by (2 + p®) although the right hand side is not divisible
by (2 + p°?). We have contradiction. For the case r = "—l;P— we only have to
exchange p® by —p®, and we can see that the left hand side of () is divisible by
(2—p°) although the right hand side is not divisible by (2—p°) whenever p® > 3
after multiplying 1(1 — p®). Hence (g, Uc,q) is nonzero whenever ¢ = p* and
q>09. n

Corollary 6.3 Theorem 1.1 holds for q = p*®.

For the case ¢ = p%**!, we can verify that the symmetric polynomial
f(t,t71) + f(t71,¢t) is not divisible by the minimal polynomial of ¢ + ¢~! if
q > 5. Hence f(t,t7') = (uqp, Ucq) is nonzero for ¢ > 5. Combining these
facts, we can complete the proof of the main theorem.

Remarks.

(1) Type Il matrices constructed on P(5) are type Il equivalent to cyclic type
IT matrix of size 5, and their Nomura algebra is Bose-Mesner algebra of
gruop scheme of cyclic group Cs.

(2) If r is negative, a type II matrix W constructed on P(9) is type II
equivalent to the tensor product of Potts type II matrix of size 3, and
N (W) is Bose-Mesner algebra of group scheme of C3®C}. If r is positive,
N (W) is trivial where W is a type II matrix constructed on P(9).
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A Note on Plethysm Composition

Tomoyuki YOSHIDA (Hokkaido Univ.)
July 03, 2002

0 Plethysm(0): Formal Power Series

Let f(t) Za,,t"/n' and g(t) = Zb t" /n! be two ordinary formal power
n=1 n=0

series. Then the composition (g o f)(t) = g(f(t)) is again a formal power

series and is explicitly given by the following formaula:

all‘iagz... b tn
(go f)(t Z Z Tl gy 1 22 51 - PO

n=03Y ip;=n

How about functions in multivariables z,,zq,--- ? Of course, the com-
position g(f(z,,z2, - -)) is non-sense because f(z;,zs,---) and g(z),z2,--*)
are single-valued functions with multi-variables. However, it is known that
such compositions can be defined in some cases (Plethysm (1) - (3)).

1 Plethysm(1): Symmetric Functions

The notion of plethysm is first introduced by Littlewood and Pélya (Lit-
tlewood 1950). Let A be the ring of symmetric functions in the variables

Iy, T2, - with coefficients in Q. Let p, = ) ,z! be the power symmet-
ric functions. Then {p,}.=12.. makes a polynomial basis of A, that is,
A = Q[p1,p2,-+]|. Furthermore, A has the Q-basis py = pa, - - - pa,, Where

A= (A1, -, An) is a partition, that is, A} > --- > A, > 0. Now, let f,g€ A
and express f as a sum of monomials:

f= E uo L, where % = z{' 252 - -
(2 4
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2 PLETHEYSM(2): CHARACTER RING

When 1y = 0, we can define a sequence of polynomials y;,ys,- -+ by

[T +z20 =] +w).

a i
Then the plethysm composition is defined as follows:
(go fHar,x2,-..) =gy, y2,...)

For a fixed f, the map g — go f is a ring homomorphism. Furthermore

Pr(y1,y2,...) = ) ua(z®)",  where (2°)" 1= 2}'25? -+
[a

Thus

Dn Of =f($;',-’b'3,~-), P OPn =Pn©Pm = Pmn
(hog)of=ho(gof), fopr=pof=Ff

2 Pletheysm(2): Character Ring

As is well-known, there is a ring homorphism from the ring of characters of
symmetric groups R = @, R(Sy) to A:

ch : R — CA,
3 X(e R(Sn - Z X(G)pl)pc(a)

. a€Sy

Then the plethysm on the character ring R by using those on A:
uov = ch™(ch(u) o ch(v)).

Let U and V be an S,,-module and an S,-module, respectively. Then
the wreath product S,, ! S, acts on U and V®”, Thus we can construct an
induced representation

UoV :=Indgms (U®VE™).

If u, v be the characters of U, V, then the character of UoV is given by uow.
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3 PLETHYSM(3): FORMAL POWER SERIES, AGAIN

3 Plethysm(3): Formal Power Series, again

We can define the plethysmic composition for formal power series with infinite
variables. Let

f($1,$2, 3 ) _ Z 13 ¥P Po JJ'I\I.'E"Z\z e (an _ 0)

— TR 2Pl
b,\ ,\2... by by
9(z1,22,-0) = Z1!A:/\1!51A2/\2!---"’"$“’2""
A

be two formal power series. Here A = (A}, Az, -+ ) runs partitions, that is, a
series of nonnegative integers with > A; < co We simpley write f and g as

b
[0 =Y. 5 glt) = DDy

A
Now, let f, (n=1,2,---) be the following polynomials:
fal@r, 22, <+ ) := f(@n, Ton, Tan, -+ )
Then the plethysm composition is defined by
(g* )z, 22,...) := g1, f2, f3,- - )
We can easily prove the following:
In*f=fo, T * Ty = Tp* Ty, = Ty, fx Ty =21 % f = f.

By the isomorphism Q[zy, 22, ] = A; z; «— p;, the both plethysm compo-
sitions are corresponding: z; «—— p;, g* f «—— go f.

4 Plethysm(4): Species

The concept of species was introduced by Joyal(1981). A species S is a
functor from Bij, the category of finite sets and bijections, to Sety, the
cateogry of finite sets and maps. A species S accompanies a formal power
series in one variables:

s = 321500l
n=0 :
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4 PLETHYSM(4): SPECIES

where [n] = {1,2,--- ,n}. For example, the species Tree of trees is the
functor for which the value Tree(X) is the set of tree on X. Joyal defined
the composition T o S of species S, T such that (T o S)(t) = T(S(¢)).
Furthermore, Bergeron (1987) generalized Joyal’s composition of species
to so-calles S-species. Let P be the category whose object is a pair (X, o) of
a finite set X and a permutation ¢ on X, and whose morphism 8 : (z,0) —
(Y, 7) is a bijection 6 : X =, Y such that 6o = 6.
For two S-species F, G, the value of the plethysm composition G o F at
(X,0) consists of the triplets (w, ¢5, (m;)) satisfying the conditions :
(a) m = {X,, Xa,...} is a partition of X with ¢(X;) € .
(b) t» € G[n,0x], where o, is a permutation on 7 defined by o, : X; —
O'(X,').
(c) m; € F[X;,0i], 0; = some o* s.t. o*(X;) = X,.
Example. Let C,, (n =1,2,---) be S-species such that

o} o acycle on X of length n = | X]|.
CalX; ] :z{é)} else.y ) .l

Then
Cm o Cn = Cn ° Cm = Cmn-
To an S-species F : P — Set, there associates a formal power series
F(t) := —t,
®) ZA: aut(\)

where A = (A}, Ag, - - - ) runs over partitions.

ay := |F[X,0,]|, o € Sym(X) is of type A

aut(A) ;= 1M 12102 ),1. ..
Then

(Go F)(t) = (G * F)(t),

that is, the generating function of G o F' equals to the plethysm composition
of generating functions F(t) and G(t).

I do not think that the concept of S-species is rather bad because for a
permutation o of type A,

aut(\) = 1A 12P2 )1 £ TR 12%2 )0 .. = |Aut(X, 0)|.

in general. The concept of plethysm for species and S-species is essencially
the same as those of formal powe series and can not be applied widely more
than Plethysm (3).
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5 PLETHYSM (5): FFFF

5 Plethysm (5): FFFF

The concept of species and its generalization nowaday become one of most
useful tools in enumerative combinatorics. However, categorically viewing,
the concept of species does not look to be a good mathematical concept.
Why do we use Set; instead of Bij? Why do we consider, for example,
the category of trees? The category of bijections Bij is too poor. It is
a groupoid and categorically equivalent to the disjoint union of symmetric
groups S, (n =0,1,2,-.-). Comparing with Bij, the category of finite sets
and maps Set; is one of the best category in all categories. Here we introduce
a generalization of the concept of species by using the language of faithful
functors with finite fibres(FFFF).

Assume that S is a skeletally small category in which any object is de-
composed into a coproducts of finite number of connected objects. Here
skeletally smallness means that the category is equivalent to a small cate-
gory. A functor F : £ — S is called FFF-functor if it is faithful and has
finite fibers:

[F7H(N)/2 | = }{X € £ | F(X) = N}/~ < co.

An E-structure on N along an FFF-functor F : £ — S is (X, 0), where
X € £and o : F(X) = N. We denote by Str(£/N) the category of such
E-sutructures. Then the correspondence N —— Str(€/N)/ =, the set of
isomorphism classes, is a species (on S).

Let S : § — Set; be a species (on §). Then we have a category
Elts(S) of elements, whose object is an element, that is, a pair (X, a), where
X € S,a € F(X).

Lemma. There is a bijective corresponding up to isomorphism between FFF-
Junctors and species by the above way.

I think that the concept of FFF-functors ia more convenient than those
of species. We can now rewrite the plethysm composition for species or S-
species by using FFF-functors. Let F : £ — 8§,G : F — S be two
FFF-functors. We denote by Con(XN) the set of coproduct components of N.
Then we can define the plethysm composition of F and G by the following:

Foc€:={(Y,n)|Y € F,n: Con(G(Y)) — &}
GoF:Fog€ — & (Y,p)— [ F(u(J)) x J
J
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6 PLETHYSM (6): CONDITION (P)

6 Plethysm (6): Condition (P)

Let S be the skeletally small category with finite coproducts, so that it has
coproduct X +Y and an initial object @. Then the dual category S°P has finite
products, and so the set of isomorphism classes of S°° makes a semigroup
with identity element. Let ¢V denote the class of object of S°P corresponding
to an object N of S. Then

tM =tV —= MxN
tA’ . tN — t“!+N t@ = 1

We can now construct the semigroup algebra Q[S°?/ =], which consists

of finite summation ,
[ =3 ant",
N

where N runs over a complete set of representatives of isomorphism classes
of objects of S. When & = Sety, an object of Set; is isomorphic to
[n] == {1,2,---,n}, and so Q[S°"/ =] is just the polynomial ring Qf] in
one variable. Thus we can view Q[S°P/ ] as a ring of polynomials with ex-
ponents in objects of S. Assume furthermore that S is a unique factorization
category with ©,1, X + Y, X x Y, and so on, if necessary. Let T = Con(S),
the full subcategory of connected(= indec.) objects of S. In the category
S, the unique factorization property means that any object X of S can be
uniquely factorized as a coproduct as follows:

X2 [[ mi(X)1;mu(X) 20
1T/

In this case, the "ring of polynomial ring” Q[[S°?/ 2] is really isomorphic
to the usual polynomial ring Q[¢! | T € T/ .

Similarly, we can define the ring of formal power series as the complete
semigroup ring Q[[S°?/ =]]. Thus such a formal power series is an infinite
sum of the form Y_ y ant”, where N runs over a complete set of isomorphism
classes of objects of S.

It is natural to ask whether or not there exists a composition operator
for polynomials and power series:

Question: How to define the composition (g o f)(t) of two polynomials or
power series f(t), g(t)?
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6 PLETHYSM (6): CONDITION (P)

Of course, g — go f should be a ring homomorphism, and tV o tM = tM*xN

should hold, too. But what does (14+t*)", the composition of V¥ and 1+t
mean? How to define it?

In addition to the unique factorization property, assume that the product
of connected objects is also connected:

Assumption (P): [,J €I = IxJel

For two power series
- =Y
=Y it a% =0,
free? |Aut(M))| NeE |Aut
the plethysm composition of f(t) and g(2) is defined by
(go W)=Y
Nes |A“t

where N = [[;.; m,(N)J is a Krull-Schmidt decomposition in a strict sense

of NS and
mj(N)
H an thJ
|Aut '

MeS
Clearly we have

thot! =t/ (hog)of=ho(gof)

and furthermore for g(t) = ¢/ (J € I), we have

(9000 =(Fo0)® = 3 ™"

Example. When § = Set/, the category of finite sets, the above composition
(g © f)(t) is nothing but the usual composition of power series.

Example. Let Surj be the category of surjections X IX, X of finite sets.
The type of a surjection X =5 X is

(A1,A2,+++), where \; :=t{y € X | =~ (y) = i}.
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7 PLETHYSM (7): FINITE GROUP ACTION

Then ), i); = |X| and ), A; = | X|. An isomorphism class of surjections is
bijectively corresponding to the partition. In fact, a surjection X =5 X is
decomposed as

(X)) — {wh)-

yexX
Thus a connected object is isomorphic to [n] := ({1,2,--- ,n} — {*}).
Hence A = (A, A2,---) and X(A) := [] Ai[é] are bijectively corresponding.
We have

|Aut(X(A))] = [N = aut()

Clearly, [¢] x [j] 2 [ij]. Hence the composition defined in this section is the
same as those of Plethysm (3).

Example. The category of rooted forests (disjoint unions of rooted trees)
satisfies the property (P).

7 Plethysm (7): Finite Group Action

Let I" be a finite group and let S := SetF be the category of finite I'-sets
and I'-maps. Unfortunately, the category & does not satisfy the condition
(P). In fact, the product I'/H x I'/ K of transitive I'-sets is not transitive in
general. Thus the definition of the plethysm composition in Q[[(Set?)”/ =)
given in the previous section can not applied in this case. To define plethysm
composition for polynomials(or power series) with exponents in finite I'-sets,
we have to extend the definition of polynomials and power series.

We first consider usual polynomials in one variable with coefficients in
non-negative integers. Such a polynomial F(t) is constructed from a map

2)\!

F %5 9M where F, M are finite sets and 2M is a power set of M, as follows:

F(t) = Ztlé(f)l € Q[t]

feF

Using this idea to the category of finite I'-sets, we have a new definition of
polynomials (with coeffcients in non-negative integers).

Let T" be a finite group. Then a polynomial with coefficients in non-negative
integers of degree at most /N is defined to be an isomorphism class of a I'-map
[6 : F — 2], where F, M are finite [-sets, 2* is a power set with canonical
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7 PLETHYSM (7): FINITE GROUP ACTION

I-action. Let BY(2M) be the set of the classes of polynomials of degree at
most M, so that B*(2*) is an additive monoid with bilinear map

B+ (2) x B¥(2V) — B (2M*N),(F,G) — F x G

A polynomial with coefficients in a commutative ring & of degree at most M
is defined to be an element of k¥ ® B*(2¥), the Grothendieck group of the
additive monoid B*(2%) of I'-sets over the I-set 2M.

Let H be a subgroup of I' and (z;) variables assiciated to conjugacy

classes of subgroups of I'. [F e, oM ] 2 polynomial of degree at most M.
For any f € F¥, where F¥ is the H-fixed point set of F, the subset dp(f) C
M is an H-subset, and so we can consider the induced I-set dg(a) 1=
Indg (8r(f)). Let

5e(f) 172 [T mu(£)(@/J)

J<r

be an orbit decomposition. Then we have a ring homomorphism

on 1 Q@ BH2M) — Q;[F -5 2M] — >, HI z,™
feFH (J)eC(T)

Then ¢ = (vu)(m)ec(c), where C(G) denotes the set of all conjugacy classes
of subgroups, is an injective ring homomorphism to Q[z; | J € C(T)]

Take any polynomial f(t) = Z’" apt™, where M runs over finitely
many ['-sets and a,,’s are non-negativ‘e integers. Then for each M, there is
a finite set A, with |AM| = ap. Let A = HIAI Ay and M’ = H{]W |
ay # 0}. We assume that A has a trivial I'-action. Then the assignment
a(€ Ap) — M C M’ is aT-map, and so we have a " polynomial” 4 — 2M’,
that is, our new definition of ”polynomials” involves those of old definition
of polynomials with exponents in finite I'-sets.

Now the plethysm composition of ép : F — 2M and 6g : G — 2V is
defined as follows:

(G 22 2V) o (F 2E, M) .= (G o F 2225 2%V
GoF:= {(gaﬂ) | g€ G,Il : éc(g)(g N) — F},
(9, 1) — {(4,5) | 5 € dc(g),i € Or(n(4))} S M x N.

This definition can be uniquely extended to those of F,G € k ® B*(2M).
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8 PLETHYSM (8): TOPOS

In the trivial group case I' = 1,
(G o F)(t) = G(F (1)),

where F(t) := Y ;e p t¥, ete.

Example. Let F := F,, and let N := {1,--- ,n} be the set of coordinates
on which a finite group I' acts. Then F¥ := {v = (v;)ien | vi € F} is an n-
dimensional vector space over F' with ['-action. A I'-code is a F'-submodule
C C FV_ Then there is a [-map called a support map:

supp:C — 2Y% uv—— {i € N |u; #0} C N.

In our viewpoint, supp : C — 2V is just a " polynomial”. This ” polynomial”
is nothing but the weight enumerator polynomial

We(t) = Ztlsupp(u)l _ tht(u).

ueC ueC
if we ignore the I'-action. In general case, we can substitute a I-sets X,Y :

We(X,Y) — C

|

(X +Y)N —— 2V (¢: A— A7HY)),

and so W becomes now a functor on finite -sets in oine or two variables.
We can prove a MacWilliams type identity for Wc.

8 Plethysm (8): Topos

A topos is a set-like category and has any finite coproducts X + Y, finite

products X x Y, an initial object @, a terminal object 1, pull-backs X xz Y,
push-outs X 4+ Y, exponential objects Y X, a subobject classifier 1 LN Q,
power objects ¥, a partial map classifier (an injective hull) nx : X — X,
and so on. Furthermore, a topos is a unique factorization category, and so
any object is expressed as a finite coproducts of connected objects.

The most typical topos is the category of sets, in which the above objects

are given by disjoint union, direct products, an empty set, a one-point set,
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8 PLETHYSM (8): TOPOS

fiber products, fiber sums, mapping space, a two point set with base point,
power sets, sets added base point.

We are especially interested in a so-called skeletally small and locally
finite topos. Here a category is skeletally small if it is equivalent to a small
category. Furthermore, a topos is locally finite if every hom-set is a finite
set: |Hom(X,Y)| < 0.

Example. Here we list some typical examples of skeletally small and locally
finite toposes. We can treat such a topos as if it is Set;. The only proper-
ties which hold in Set; and do not hold in a general toposes are (XM) the
exclusive middle ((A°)¢ = A), (B) Boolean algebra Sub(X), (AC) Axiom of
Choice, (CT) the connectivity of a terminal object 1.

(1) Sety : the category of finite sets and maps. In this topos, we have
YX = Map(X,Y),2 = 2 = {0,1}, X = X + 1. All of (XM), (B), (AC),
(CT) hold.

(2) Set}‘ : the category of finite I'-sets and I'-maps (I is a finite or infinite
group), where X +Y, X x Y,YX Q X, etc. are same as Set;. (AC) does
not hold.

(3) Setf : the category of finite S-sets and S-maps (S is a finite monoid).
In this topos, YX is given by the set Mapg(S x X,Y) of S-maps from S x X
to Y, together with S-action defined by

(1, A) — “A; (s, ) — A(su, z).
Furthermore, the subobject classifier £ : 1 — € is defined by
Q:=Sub(S)={ACS|SA=A4}, t:+— S.
(XM), (B), (AC) do not hold. |

(4) Surj : the category of surjection of finite sets. In this topos,

Q=(8—2)=[2+[1], (¥ ->7)*—D =¥ 7%,

and so on. (XM), (B), (AC) do not hold.

(5) The categories of rooted forests of bounded height < 4. The category
of di-graphs. The category of functors from a finite category to Sety; and
natural transformations. (XM), (B), (AC), (CT) do not hold.

— 238 —



8 PLETHYSM (8): TOPOS

Now, Let £ be a skeletally small and locally finite topos, and put I :=
Con(£&), the full subcategory of connected objects of £. Sometimes, we write
|Hom(Z, X) as p;(X) for I € Z. Then the following hold:

er(X +Y) =p1(X) + 1Y), oi{X XY) = @1(X) - 1(Y),
X2Y <= oi(X)=¢i(Y)forany I € T.

As is in the case of the category of finite I'-sets, we consider a morphism
of the form dp : F — QM. From such a morphism, we can construct a
functor X — F(X) by the pullback diagram:

F(X) — F

! Jor

XN QN
Then ¢;(F(X)), I € I can be presented by a polynomial in the variables
xy = y(X), J € Z. Thus it is natural to definc a polynomial of degree at
most M with non-negative coefficients by a morphism of the form §g : F —
QM.

Take two "polynomials” ér : F — QM and 8¢ : G — QY. We can
write the plethysm composition defined for ”polynomials” in the case where
£ = Set; by using only some standard operatioins inside the topos £. The
plethysm composition dgop : G o F — QMXN s constructed by the the
following pullback square:

GoF a ﬁN , QMxN

! !

G — QF
. 7¢]

Here the vertical arrow F¥ — Q¥ is constructed as follows:
(F—1)— (F—1=0)— (FN — Q).
Next FN — QM*N s constructed as follows:

(f‘ LY VRN QM) — (ﬁN N (QM)N — QAIxN),

where p is the retraction of the subobject QA — QM.
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9 PLETHYSM (9): TAMBARA FUNCTOR

9 Plethysm (9): Tambara Functor

In the final section, we study the ”polynomial” and "power series” with
coefficients. The most suitable coefficients ring of polynomials is a Tambara
functor.

Let € be a skeletally small and locally finite topos. A Tambare functor T
from € to the cageory of commutative semirings is a functor equpped with
three kinds of maps additive transfer, restriction and multiplicative transfer.
Thus each T(X) has a semi-ring structure, and to each f : X — Y, T
assigns three maps

fi + T(X) — T(Y) (additive transfer),
f* : T(Y) — T(X) (restriction),
fo : T(X

Here fi is an additive map called a transfer map, f* is asemi-ring homomor-
phism called a restriction map, and f, is a multiplicative map.

For example, for a finite group I' and a commutative ring k&, the func-
tors X — Go(Mod*"/X) (the character ring functor of a finite group),
X — Go(Setl}/ X) (the Burnside ring functor), and Exti-(kX, A) (the co-
homology ring functor with coefficients in a commutative ring A) are all
Tambara functor together with additive transfer (or additive induction), re-
striction, and multiplicative transfer (or multiplicative induction). The no-
tation £/X denotes the so-called comma category, that is, its object has the
form A — X. Furthermore, X — 2% (power set) is a Tambara functor
from Set;. In fact, for a map f : X — Y, the structer maps are given by
f(A) = A, f*(B)=f"'(B) and f.(A)={y €Y | f~' C A}.

The easiest example of Tambara functors on Set? is X — Mapp(X, A) =
Ext2r(X, A), where A is a commutative I'-algebra over a commutative ring
k. The three maps are given by

A s y— ) Ma), 1wz pl(f(@),

zef(y)

A s y— [ M),

) — T(Y) (multiplicative transfer).

where A\: X — Aisal-map and f : X — Y is a '-map between finite
I'-sets X,Y.
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9 PLETHYSM (9): TAMBARA FUNCTOR

Now let T be a Tambara functor on £. Then any monomorphism j :
N — N’ induces additive maps as follows:

TOQV) — T(@QV), 7 : T(QV) — T@OQV).

Thus we have a pair of covariant and contravariant functors (—), (—)*
N — T(QV) from Eqon to Mod,, which are same on objects. Thus we can
consider the colimits and limits, and then we have the ring of polynomials
and the ring of formal power series with exponents in £ and with coefficients
in T defined by

Pol(£) := lim T(QV), Pow(€) := lim T(QY).

Similarly, we can define the ring of Hurwitz series by lim T(QV)/Aut(N).

We can now construct the plethysm composition for our polynomials. To
do it, we only need to construct the map

o: T(QY) x T(QM) — T(QM*M),
We first consider the following sequence of morphisms in &:

QAI n , ﬁ (Pvaﬁ; QA’ 9) ev
QM x Q¥ x N —— (QM x Q)N = QMxN x QN

where (i) p : QM —, QM M is the canonical retraction to the inclusion 7 :
QM Q“ (i) x QM —  is the characteristic morphism of the

subobject 7 : QM — QM. (iii) ev : X¥ x N — X is the evaluation
morphism, which is the adjoint toid : X¥ — XV (X := Q¥ x Q), (iv) 7 is
the projection to the first constitute.

Thus applying the operators in the Tambara functor T, we have the
following map:

T@OM) 2 T(QM) LXh, pon  q) 25,
TQM x Q)Y x N) —Z T((QM x Q)V) = T(QMN x QV),

Next, let
7 T(QY) — T(QMN x QN)

be the map induced from the projection QM*N x QN — QF,
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9 PLETHYSM (9): TAMBARA FUNCTOR

At last, we have the reaquired map
o: T(QN) x T(QM) <1 TQMN x QN) ™, T(OQM*N),

where {, } is the paring operator in the Tambara functor T and 7 is the
projection.

This definition of polynomials and plethysm composition look compli-
cated a little, but we can treat such polynomials as if they are in one variable.
Here is an exmaple. The derivation F — QM of § : F — QM is defined
by the subobject classifed by é : FF x M — 2 whichi is the transpose of 4.
Furthermore, let €,; be the subobject classifed by ev : Q¥ x M — Q, and
so we have a morphism @ :€,— QM. Then the operation 8,8* on T(QM)
induced by 8 is just the derivation corresponding to ¢t d/dt. Of course, usual
derivation laws hold, especially 8(G o F) = 8(G)(F) - O(F). Furthermore,
there is a Tambara functor varsion of derivation, too.
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(r, 2r) BB DR S ERSEHN

Discrete orthogonal polynomials obtained from (r, 2r)-hypergeometric functions

K48 %] ( Hiroshi Mizukawa)

Division of Mathemaltics, Hokkaido University, Sapporo 060-0810, Japan *
e-mail: mzh@math.sci.hokudai.ac. jp

1 F

HLEDOEFREDRT, (G, H) #* Gelfand pair & 13iFHERH 1§ #° G-module
ELTEAPTHLIIETHDE. ZDLE of 1§ OEEHETIC (ERELRY
T) —EMIZ H-ARELBHMHFIE L, 1% zonal spherical function & § 9. |N-
REDER 5] IZHMEED Gelfand pair 5B 5N 5 EHHRETEIZOWTOR
B BH, T I T BR Weyl BEEHBIEO LT, (W(B,),S.) LV RT 76
%51 5 Krautchouk £#H(3\ & 55 BUEKLZERO—{LERATLVERS. ¥
LTCEDHERDISEROBRMTH S (n+1,m+ 1) WEBRTHE LTINS T
R TELILERS.

2 FHFRE®D Gelfand Pair
GEHME, £ LT H 22T RELET B,
Definition 2.1. FEEH 1§ FEEYO L &, (G, H) % Gelfand pair & X 5.
&T, LFTl& (G, H) % Gelfand pair £ 5, # L CEERB G HUTO LS
WABLTwEET 5,
V=1§:}=@vh Vi V; (i # 5).

SOLEWHKELT s=|H\G/H| Th5.

{gis1 <i<s}

*Current Address : Department of Mathematies, Faculty of Science, Okayama University,
Okayama 700-8530, Japan
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A EAERE H\G/HORERETH. 861D, =HgH eBL. VE 2V, 0
H-AEE52eM e+ 5. Frobenius DHEHH S

dim ‘/iH = (‘ ]-H)H = (‘/u]-H)G =1
ThD. STV, W BRI THS. [+ % V; EEE SN C-RELBEN
B, FLTdimVi=né&d¥5 nE
{vh o0}
%V, DEBBEREE, 72220 vi € VH T3, (plhickecn ¥ G D V; EOFFIH
BRevs. C(G/H) e GHNMARBELERZ G LORBE TS, LD,

C(G/H) = {f : G —C; f(zh) = f(z) Yz € G, Vh € H}
Ths. COEE dmC(G/H) = [G: H EH6»ThHD. MBER
pi : V; — C(G/H)
rgheGandve V.2 LT
@i(v)(g) = [vlgvi]
TEHT 5.
pi(gv)(k) = [gulkui] = [vlg™"kvi] = @i(v)(97'k) = (99:(v)) (k)

N2 0 2DT, o XYk G-BEERTHS. TLTREHRS,

C(G/H) = @cp,

Wi, w e pi(Vi) £ geCGIHLT, wilg) = [vilgvi] = pii(9) TEHT 5. ETO
BBNG,
991'("/:')” = Cuw;
TH5b.
Definition 2.2. ¥ w; % (G, H) ® z20nal spherical functions & & 5.
V2 C D zonal spherical function DD M ZETFTE L.
Proposition 2.3. (1)ge G & h,hoe HIZH LT,
wi(highs) = wi(g)-
(2) £ g € GITH LT wi(l) = 1 52 wi(g™") = wi(g) -
KA zonal spherical function NDEXHETH 5.
Proposition 2.4. g € D, {CM L T wi(Dy) = wi(gs) L -k &,

1 « —_
]El Z |Dk|wi(Dk)wj(Dk) = 6,,- dim ‘/'._l
k=1

ThH5b.
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3 Gelfand Pair (G(r,1,n),S,) &Z D Zonal Spher-
ical Function (CDWT

No={0,1,2,--- } A HABOREL T . TITRIEO¥EEr 2BETS. —D
Bhr FRE £ =exp2ny/—1/r L. C" =< € > x---x <& > % cyclic group
C=<(>DnBOHMETSH. MBS, (2C" LIZKD XS IZERT 5.

0(61»62:' .. ,£n) = (60"(1)7&7"(2)7- o an”‘(u))» (611627- e 7671) € Cnv
o €S,

wreath product C1S, &IZZDEAPLHL B LHHOZ L TH B (11, 14].
COHxE G(r,1,n)=C1S, L IWEHEHMEL V. ZOEITIE, G=G(r,1,n)
EEDEAEEH =G(1,1,n) =5, 2EX5.

FTRMEBERBOELIHBRE .

Proposition 3.1. (1) Hill#EKRFORKFEKRE D, IKTHEZLNS.

r—1
Drn= 1-""1$ [ X Y T r—l,___’ r—l;l G, ei= b f .
~={(L €06 € g1 e ; n}

& &) [ 2

e = ("1

n

(2) RERDEEUL

Thb.
® G 3 n-EHROLZHAOREM I
(61’62; e ,fn; O')f(.’l.'h e ,:L'") = f({;('l):r,,“),f;('?)x,,(g), e eg,;(:-,)xa(n))

DENERTE. LTIz W THERBOBMWIROERTEL L),
Ng 2255358 &tk Par ~DE% %,

¥ : N5 3 (ko,kiye -+ keoy) = (0F1% oo (r = 1)) € Par
TEHTH. COERENCTROEELH 2.
Proposition 3.2. Fikil lgf"l'") ix,
lg",fr‘l’") o @ Kok Krt)

il ki=n
ERRT A, T TH Vil k) (3EEE 70 G(r,1, n)-i]llﬁ?f‘é W ko kIHIZE
Fashs,;
V(ko-kl-"'.kr—l) = @ Cf.

feM, (dl(ko,kl.'-' ey ))

— 245 —



TIZT, A= (M, A) EHLT,
Mo (A) = {2t @0ty - 250,10 € Sa}
Ths.

Z DFRCHN B BA RS BESIULEE O Specht B DR —ESGH 5 % 5 53
THRIAPIAIXENBIDLTTHD. E612, SHIIICETHCHS, B
TRMWER T Lz 5.

Proposition 3.3. (G, H) (& Gelfand pair.

Example 3.4. G =G(3,1,3) and H =S £ LTHIERTA L. Filixsl 1§
RO L IFRT 5:

lﬁ — V(S,U,O) @ v(().:l.()) @ v(0.0,3) @ V(2,1,0) @ V(2.0,l)
®v(l,2.0) @ v(l.0,2) @ v(0.2,1) @ v(0.1,2) @ v(l,l,l).

BODPDBHIMFEHETLTHLS):
V01D = Crlrlry @ Cxlalz, ® Cxlrizy, VO3 = Cryzpzs.
IREATWD & FIZIT S3 AEL VORD o ifRsy 22
C(a?xizy + 22137y + 2222m))

THAZEAMbHS. it monomial symmetric polynomial &IN5 %%

I & ) FIXMH % EFE L zonal spherical function 2% 2 5.
BEERI Sy Vikoki ko)) N E

[az*|32"] = aBéy,

(ko,kl ..'.l. .kr-— 1 )
TEAT . SITa b fHHHBTHS, kXA OLDTIHELVETOR
FLT 2 =aP o ad &5 CORBUEIG(r, 1,n)-FETHEILHT CbH

67 Oi V) v 9 € G(T7 lan)v fl(m)s f2(z) € v(ko,h.v--,k,-_]) ‘:*;j- LT

[(gf)(@)(gf2)(@)] = [fi(2)| fo(2)]
T& 5. monomial symmetric polynomial ¥ Ef L TH I 9.

A= (/\1,/\2.--.) = (Ok01k12k2 .. '(1‘— l)kr-l)
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, 123¢ L T monomial symmetric polynomial & (3,

"l,\(.’l‘) ,\,o'l\l ]\ 1 Z Ta(x)fa(2) a(n)

= E 0 2P0l ol

= Ii(g) L .Li,((,).Li“) .. "Li“) L (r |) - (r=1)*
lk(lkl"'kr—l ! ko ! k r—1
n

TERENBMBEERTHS. 2T, I = (i<l < <il <
n} AR LT Thokikeor — (5O Lo r=040) g g U'_IIU) ={1,2,---,n}} TH
%. 16 A2 monomial symmetric polyomial {3

[m,\(a:)|m,,(:r)] = by,
2ilirT. g= (6,6, &ni0) €G EBVTRO L) IZEHET 5:

[ma)|(gma)(@)] = [ma(@)ma(€; ¥y &y Ta@) ** + + EnnyTotm)]

_ [ N
- kulkl k! Z 6"(l) a(2) ' ’ga(n)
=my(&1, 2. - - ,6,.)/m,\( vy 1)
Z 1T (G, H) D zonal spherical function DHFRE R & B RRPH LRI

Theorem 3.5. Gelfand pair (G.H) @ zonal spherical function 1%

w(ko.kl‘m kr,l)(&laﬁ?v M egrl;a) = 7"/\(6]76‘% ... yén)/"n/\(le Tty ]-)
THOEND, SIT A= (00125 (r—1)o-1) ELT YT ki =n TH 5.

4 (G(r,1,n),S,)? Zonal Spherical Functions % Hy-
pergeometric Functions T&R/~T %

Z DT B INUIAIETD zonal spherical function % 25 5 fll#5: B L TaFl L #
BB CTRRTEILTHS.
ZDLDILBELRTERAELEL ).

1 m( )
(n —m)! =(=1 T

)

I 2T (z) i3 shifted factorial TH5, 2F 0D,z ELREILE L Tm > 04 b61L,

(Dm=z(z+ 1) x+2) - (x+m—-1)
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FLTm=0%261L,
(z)o=1

THa. UTTEOL n—m PROEKLLIT L
I.omm(1<i<k-1)eNy Il lL T

(:l) (-1 )m( m').,,

=0THrZ LICENRLL

{n=m)i m)'

T . (—z) =lm
. k-1 = (—l) i=1 lkflt_—
My, Mpm1, & — Do) My 1) my!
LERTD. EHPLTCOIPLILEneZiZwLT,

_ (n), ¢
(n)s-l - (—n—s+ l)‘( 1)
Thsb. CITHEMNBELERLTSBI)
Gauss’ hypergeometric functions (2, 8, 18]
oFi(a, by z) = Z )i (b
pard ()
Appell-Lauricella’s hypergeometric functions
b= (b, - ,by) €CTE&T 5.
g
F a,b;c;a: = m|+ +m‘H m.al xd
D( ) Z c)m|+---+md m 1' md'

(1, mg)ENG

FLTIhLZEL L0 — O ERANKE LTRAGNOA TS,
(n + 1, m + 1)-hypergeometric functions [3, 9, 10, 12, 13, 18]

0= (al’... ’a,") = C",ﬁ= (,Blv"' ?Bm—n—l) c (Cm—n—l %L-—CX ( l]) .

1<j<m-n-1

l-[:.=1(ai)£:,'=| a,, n:';-l’l_ l(ﬂi)z;ﬂ___—]n—l aj, n;;’;’

Fla,8;v,X) = Mr._ o ot

(652,)EMp m~n—1(No)

qu;t BT EIRB A, vy = —N 2 61E, ERERD LI IZIBE LEFE
d~

F(O ﬁ _N X) _ Z n;;l(ai)zznnl a,, n:-'__l_.—l.n_l(ﬂi)z;r;-ln—l aj n I‘.‘Ju
A Eys o< (=N)g,,a, [Tai!

(a0, 1€ M ey om0 =1 (Ng)
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LUFRIDIEEDERARND Ty — A TH 5. fHAMEA = (0F1h .- (r = 1)l-1) &
RET 5.

(kkaI kr-l) r—1 r—1
m(t’o.t, Or-1) —an\(l 1:6;"'*67"'1{ :"'aE )
[(l €| Er—]
LEHRT A, AR,
(koskiy keot) _ 1 (Koskr,s ro1)
w([o-:tlv"',er—l) - ( n )m(fg £y, eat)
ko.kyye ket

Ll
PI‘OpOSitiOH 4.1. L+ +---+ € =k0+k|+---+k,._|=nt Lk &,

(1)
ok 1) Zogisgr-1 1
m 0<i j<r-1 K
(€081, \Er1) ZH (ato,all, . air—l)E )

a€A 1=0

ZZT,

r—1 -
A= Ag:;l- zt" {a = (a;;) € M(r,Ny); Za,.j=kj, Za,.j =),

(2) B
r-1 r-1
S migtiyd ot = TIO e
ka+-+ke_1=n i=0 j=0
THz605.

Example 4.2. r=3and n =4 CHEZRATAH LS. (ko ki k) =(1,1,2) 2L T
(b, 01, 62) = (1,2,1) D&, BT,

1
wiish = man(1,6,6,6)

_i 3 4 5 6 7__12
= 12(25 +36+26° +36° +2€") = 45.
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Thh,Zh&b
AD = Sl = (€0 + 265+ 267 4 26 + 260+ 26 46
= %(253 +364 + 265 + 3% + 267) = -252
BIYRIZAHNTE S,
CHNDMRABEMBEAL | LEDLRBTHAIH, S ETRAETHL YRV
BiToTWBNTH 5. RISHREIE (?7) O Paf dAR (IFRANORR) o
Wl tzdthifAMEERTES. 20100l fE L LY.

Lemma 4.3.

r-1
(koky s ko) L Eau ) ( ) ] a,
m = - 1)%
(lo.ll.a.. .lr-l) 'IEZ_A (k0700| ’aor 1 '_—_Hl lOvallv .o ’a"_ 1 H(£ )

LT, $9—"
Lemma 4.4. ag; = k; — Y7 a;; #FLThy=n—-Y 1k LB L,

( n-Y,;a; )_( n )H (=FKi)gr-ta,
ko, ao1,+ -+ ,agr_1 Koy« -+ kr=t/ (- )Els-,er—l"-J
5.

FLT, CREHASHLERLRD L) LERMNELND.

Theorem 4.5. Gelfend pair (G(r,1,n),S,) @ zonal spherical function (3 (n +
1, m + 1)-hypergeometric function TRO &L H ICRR &N 5.

ok, =
w:[}:,[ll'... .(")) = F((_ﬂls Tty _fr—l)s (_klv R —kr—l); —n; :-r).

22T é = (1 —fij)1<ij<r—1 Thb.
& 5|2 Proposition 24 DEXMEEZ Oy — ADYSIZHETLTHA.
Theorem 4.6. b L k = (ko, k1, ke) 25 Lo ki = n kililzd L &,

_[E;n( M)F( b~k —m; 2)F(F, —F'; -3 )
(k[) )_l’r_ll:(jkk

—sz‘)' :':"C.e=(£07ela"' ver—l) ‘:j;j‘l-’—ce=(ela° r l) t [AVAR

B, :'C‘f%%htﬂ%&ﬁlﬂﬁiﬂ@ﬂ’iﬁ@lﬁi\:'@&é#, IhHp—fkENL 5
VOIS I—3 3 Y EFEOOMIERICHROF LI L TH L. ORI L LTI
) [Hi%-KN [1)] Tl 2 EEFED wreath product & £ DESEIC B R Weyl B %
EN, OB IR IERMBELREOEL Y 1 7OERELHERXNEFRRAL TS
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AFRELOELEFERPL/ONS

symmetric association scheme

UREFE HLE FE (Makoto Tagami)

Graduate School of Mathematics, Kyushu University

1 Introduction

AREEER (UFHE0S, Sho B4k, FRBLO L%
FUHP &R&EE$ %) 13 Poincare b 2Pl

H={z+iy|z,yeR,y>0}.

DATRUHOFME L TEFZ SN D, FUHP (23— SREIBEEABIZEH L
TBEYH, TOERIZLY association scheme 25T & 2, HRE LD LH
WAL, S D association scheme O relation (& Poincare FigEnD Fifbl
ThHAHMFLIEHETEZ 6 TE D, symmetric associtation scheme T
52 LN h b, symmetric 5D THFIZ commutative {27% B, character
table 3 7% 1 & spherical functions 278 2 LB H5, £hiL [5], 4] TT~N
TRHOLR TV,

B GCLETDHBAE K HPEZONLBIIGIEG/IK ILEDI SO
EDTHBIZEATS, SOEMZL D %505 association scheme %
X(G,K) TE+ I LT B,

association scheme 137: { SANY S 7D T H LR Z A0, I
Pk /77BN LR T 77T LIZTHE, ol
&3 2 2D relation 2T, MOV YT 7 Cd S Ramanujan graph
1275 (7] 88). LALRSEIS, [2) DT, HTRIRICET S LT
ifi 7 7 713 —#%i213 Ramanujan graph i{E 2 6 R W I EAREN TS,

—Ji. ARG L TI—RBEHOERIZ & > TH 5N 5 association
scheme A RE LD LEFM@ EF L & 9512 symmetric 122208 »
ERZERINTV RV, TOHET, R LN L TH association
scheme ¥ symmetric I27% 5 2 L DN OB LB, FDH, relation
MEDLHIZIEZLONDMIRET S,
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2 Definitions and lemmas

FY, COHETEDLNLILTEERL T pIFHEE. RRIIH
LTUR)IEEBRLRTET S, MED/H, (mod p) ¥ (p) & REHE
T 5o

ne€NIIHLTR, :=Z/p"Z, 5 LRy ={0} £ LTHL. 1, DT
HrU,:=UR)={ze, |zZ£0(p)} &F 5 [Un|=p""Yp-1)
SCHONTA EHII, U, 3IXABETHEH6, U, =< § >={§' | i€ Z}
ELBEHNBEET D, CDSFVESRELTE

Kizdh b R, DIEAREERT Do BRAME R, LOEEE LT, {1,V5)}
#Forank 2 OHHINEEE M, £ T 5, Thbb,

M, ={z+ y\/3 | 2,y € R,}.
M, R EH#T B, 2, 9 V0, 22+ Vo € M, XL T,
(z1 + 11V0) - (22 + 12V0) 1= 12 + 11920 + (X1y2 + 223 ) V6.

SO, M, BTBRBHIR S,
BETEEOBELFRRIZ, z=c+yVoe M, 123 LT

Re(z) := =z, Im(2) :=y, Z:=x — yV0, Nu(2) := 2% - y26
&t 5B, /JWAN, B M, DRERGETH, THbL, R LD,
Nu(zw) = N, (z)N,(w) (Vz,w € My).

DLEDREDT. ROFHEAIKY L2, HEOLEH I oM TIaHE
T5,

W 2.1. UM,) ={z€ M, | N,(2) e U}.
ﬁ% 2.2. N,: U(A!n) — Un ‘iﬁg:ro

HRGE LD L EPESERE Fy DA Fp OBFHREE LTERKL
oA, HEEBLOEFFEEIE R, DIEARM, ORFEEGELTEREN
% (2

EE 2.1 (ARIRLOLFFE).

H:={c+yVs |z € Ry,ye U}



IH| = p2—\(p - 1) Th B,
R, LO—REHEY

a b

G.:=GL(2,R,) = {( 4

) la, b ¢ de R,,ad—bc;‘é()(p)}
¥ B MBIZHDD LI Gl =p" 3(p-1)2(p+1) TH B, F7:,
Gn DL AT EUD» O %D, Thbb, Z(Gh) = {al | e € Upn)o
ROWMBL 2] 1L B,

#823. z2€H, g= @ 3 ) € Gp 12X L TR D 32,
c

fa) cz +d € U(M).
(b) (az +b)/(cz +d) € H.

a

a3 Ly, zen-n,g=( Z)GG.. LT,

[

- az+ b
z= cz+d
ELT, GuHFHIZERLTWAZ Edbh s, TTHIZ{EHLTWAZ E
2RBLDIZ, 771 VBERIEIND G, DRI A, ¥R D,

y
An = eUn. . Rn .
{( 0 1 ) ly , ¥ € Ry}
MBIZ05 5 & 512 [An] = [H| = g Up—1) TH Do ( g : ) cn

ZHLT,

0 1

$oT A, ORIZED VEX HOBEBOTRIBTIENTELNT, A,
EHCTBIZEHLTWS, LoTHFIZG, DTBIZIEALTWAHEN
Db,

RIZG, D VBT IETRIMEER D, OS5 Poincare L
EFEMOBEE HEL TEREBRLIFITR TV,

(y x)-\/g=:z:+y\/3.

Ky:= {geGnlg-\/g=\/3}={(‘; bj) | a,b € R, a®~b5 £ 0 (p)}.
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a
Za+bV/8 EIEERBEVIERTUM) LRI L 3, HREDY
AIEIERBIIRERTH - 7-55, FRROBSIEKEIREIE S v, T
Lbb, ROGEMNEY LD,

Wl . UM)>Z/p"ZZ/p"  (p* - 1)Z.
LUF. RELA RN R, Us, Gu, A, Kn 2ENWFNRR, U, G, A, K
EREIRT B, IRAFAMPLAVE BILEAFELHNLIEIZT 2,
COKIZHLTGOEUHMESH K\G/K K5,

é= Y (g ‘f)K:ZzK

z€R, yeU 2€EA

M85 & 12K, = p? D (p+1)(p—1) T B, K, 12 ( ‘; b6 )

ERREND, COFRIILY K\G/K ORERERET AP LY
B3 hr. HE G/K £33 A 2 ROMIGIZE Y G- P& & L TRH—#

5,
m+y¢z~(” x)xﬁ(y T)
0 1 0 1
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On (2n,2,2n,n) RDS’s
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1 Introduction

An (m,u, k, \) relative difference set (RDS) in a group G relative to a subgroup
U of order ¢ and index m is a k-element subset R of G such that every element
g € G\ U has exactly A representations ¢ = ryry ! with r,,r, € R and no
non-identity element of U has such a representation. The subgroup U is often
called the forbidden subgroup. If u = 1, then R is an (m, &, \) difference set
(DS) in the usual sense. A (ul,u,u)X,A)RDS is called semiregular. An RDS
R in a group G relative to a subgroup U is semiregular if and only if R is a
complete set of right coset rcpresentatives of G/U.

Let R be a (2n,2,2n,7)RDS in a group G of order 4n relative to a normal
subgroup U =~ Zj of G. Such a group is called an Hadamard group of order
4n by N. Ito ([4]). In this article, we remove the condition that the forbidden
subgroup is normal and show that a Sylow 2-subgroup of G is noncyclic and n
is even unless n = 1. We also give examples of RDS’s relative to non-normal
forbidden subgroups.

For a subset X of G, we set X(-1) = {z~! | z € X} and we identify a
subset X of G with a group ring element X = Y zex % € C[G]. Moreover, for
f=Y.ecca:2 €C[G] (a; €C, Yz €G), weset f-V =3 _-a.z' € C[G].
The terminologies are taken from [2] and [6].

2 The case that a Sylow 2-subgroup is cyclic

In this section we show the following.

Theorem 2.1 If a group G of order dn contains a (2n,2,2n,n)RDS, then a
Sylow 2-subgroup of G is non-cyclic and n is even unless n = 1.

Proof. Assume n is even and a Sylow 2-subgroup of G is cyclic. In his paper [4],
N. Ito showed the non-existence of (2n,2,2n,n)RDS in G relative to a normal
subgroup U of G of order 2 (see Proposition 7 of [4]). However, his proof does
not depend on the normality of U. Thus the theorem holds in this case.
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Assume n is odd. If there is an element z of order 2 outside U, then z is
represented cven times as a difference d,d; ! with dy,ds € R because = = z™1.
This is contrary to 2 Jn. Hence U contains all involutions of G and so G > U.
By [4], n = 1. Thus we have the theorem.

By Theorem 2.1, PSL(2, ¢) with ¢ = 3,5 (mod 8) contains no (2n,2, 2n, n)RDS.
We ask the following :

Question : Is there any finite simple group of order 8m that contains a (dm, 2, 4m, 2m)
RDS 7

3 A conjugacy class t¢

Let R be a (2n,2,2n,7)RDS in a group G of order 4n relative to a normal
subgroup U ~ Z, of G. Such a group is called an Hadamard group of order
4n by N. Ito ([4]) and he showed that a 2n by 2n matrix H = (hi;) defined by
hij =1if Rr,-rJT" NU = {1} and h;; = =1 otherwisc is an Hadamard matrix of
order 2n. In this section, we remove the condition that the forbidden subgroup
is normal and study the relation between a (2n,2, 21, 7)RDS and an Hadamnard
matrix.

Hypothesis 3.1 Let G be a group of order An(> 4) that contains a (2n,2,2n,n)RDS
R relative to a subgroup U = {t) ~Zy : RRU"Y = 2n +n(G - U). Assume that
tG ¢ R-VR, where tC is the set of conjugates of t in G.

Lemma 3.2 We may assume that t ¢ R-VR.

Proof. By assumption, cte™! ¢ RV R for some ¢ € G. Then ¢ g (Re)(~"(Rc).
Hence, exchanging R for Re if necessary, we may assume that ¢t ¢ R(-VR.

In the rest of this section we assume that ¢ ¢ RC-YR. We note that ¢ ¢
R-VR (= RR-Y) whenever G > U (see Proposition 2.8 of [5]).

Lemma 3.3 The following hold.
(i) tR=Rt=G\R.
(ii) |[zRnylU| =1 for all 2,y € G.

Proof. By assumption, RN Rt = ¢. Hence, as |G| = 2|R|, we have G = RU Rt
and so Rt = G\ R. Similarly, {R = G\ Rast ¢ RR("V. Thus (i) holds.

Since t € R©-VR, R is a complete sct of left cosct representatives of G/U.
Hence zR is also a complete set of left coset representatives for x € G and so
[zRNyU| =1 for all z,y € G. Thus (ii) holds.

Lemma 3.4 Assumet d RC-VR and let r,s € G. Then r € sR if and only if
rt € sR.

Proof. By Lemma 3.3, |r~'sRNU| = 1. Hence the leinma holds.
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Notation 3.5 Assumet g R©-VR. We define h,, € {£1} (r,s € R) by

hr,s= {1 ifTGSR (1)

—1 otherwise.

Lemma 3.6 Assumet € RCUR. Fix u and v with u,v € Ryu # v. Then
[{r € R| hruhry =1} =n.

Proof. We have h, k., = 1 if and only if cither (i) r € uR and r € vR or (ji)
r€uRand r € vR. By Lemma 3.4, r € uR if and only if r € uRRt. It follows
that A,y = 1if and only if either (i) 7 = ury = vry or (ii) r = ur\t = vryt
for some 71, ro € R. This is equivalent to either (i) » = ur, and 7"17"1','1 =u"lv
or (i) r = uryt and rr;' = u~'v. Note that [RNurU| =1 for any r, € R by
Lemma 3.3. Hence, given distinct v, v € R, h, 0, = 1 for some r € R if and
only if my7;' = u~'v and RN ur U = {r} for some r;,r2 € R. Thereforc the
lemma holds by the definition of RDS.

Proposition 3.7 Let R be a (2n,2,2n,n)RDS in a group G relative to a sub-
group {t)(= Z3). Assume t€ ¢ RC-VR. Then, we may assume t € RV R and
have that a 2n x 2n {£1}-matriz (h, ) defined by the following is an Hadamard
matriz of order 2n :

hy.,=1<=srenR

Proof. By Lemma 3.2, we may assume that ¢ ¢ R(-VR. Let w,v € R, If
u = v, then clearly Zre g el = 2n. Assume u # v. Then, by Lemma 3.6,
Y orertrultre = 1-n+(=1)-(2n —n) = 0. Thus 2n x 2n matrix (h, ;) is an
Hadamard matrix.

4 Construction of (2n,2,2n,n)RDS’s

In this section we give examples of groups that contain (2n,2, 21, n)RDS’s rel-
ative to non-normal forbidden subgroups.
Throughout this section we assume the following :

Hypothesis 4.1 Let R be a (2n,2,2n,n)RDS in a group G of order dn(> 4)
relative to a subgroup (t} of order 2. There exists a normal subgroup N of G of
index 2 such that G = ({)N. Set R = A+ Bt, where A and B are subsets of N.
We may assume |A| < |B| by exchanging R for Rt if necessary.

Proposition 4.2 Let notations be as in Hypothesis 4.1. The following hold :

(i) there exists a positive integer m such that n = 2m? and |N| = 4m?,|A| =
2m? —m,

(i) AACYD + A A D = 2(m2 + (m? — m)N), where A' =t ' At, and
(i) B=N\A.
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Conversely, if a subset A of N satisfies (i)and (ii), then a subset R of G defined
by R=A+ (N — A')t is a (4m?,2,4m?,2m?)RDS.

Proof. By assumption, RR"Y = 2n + (N + Nt — 1 - t). On the other
hand, RR(=Y = (A+ Bt)(AV 4¢tB-1D) = (AAD 4 BBC1) 4 (B(AY)-D +
A(BY)=Mt. Hence we have

AACY £ BB = 2n +n(N - 1) (2)

and
B(Al)(—l) + A(Bt)(-l) = n.(.N - 1). (3)

By (3), A'n B = ¢. On the other hand , (4] + |B| = |R| = |N| = 2n and
A', B C N. Hence (iii) holds.

Set @ = |A| and b = |B|. Then, by (2) and (3), a+b = 2n and 2ab = n(2n-1).
From this, we havea =n— /T andb=n+./%. Set m = V3. Then n = 2m?
and |A] = 2m? —=m,|B| = 2m'§+ m. Thus (i) holds.

By (iii) and equation (2), we have AAY + (N — AY)(N - (A1) =
Am?+2m?(N =1). It follows that AACD + AH(AYCD 4 (4m?2—2(2m2—m))N =
2m? + 2mN. Thus (ii) holds.

Assume that a subsct A of N satisfies (i) and (ii) and set B = N\(A'). Then,
one can easily verify that (A + Bt)(ACY 4 tBC1) = 4m? + 2m2(N{t) — ().
Thus R(= A + Bt) is a (41n?,2,4m?, 2m?)RDS relative to (t).

A (45%,25% + €s,5% + €s) DS (e = £1) is called an Hadamard difference set
of order s2.

Example 4.3 Let N = (x) ~ Z5 and let t. {¢ = 1) be an automorphism of N
of order 2 defined by x'« = aB*¢. Set A = {1,z,2%, 2%, 2% 2"} and B = N\ A*,
where t = t.. Then onc can verify that A with m = 2 satisfies (i) and (i) of
Proposition {.2. This implics that the semi-dihedral group SDsp of order 32
and the modular 2-group Ms(2) of order 32 have (16,2, 16,8)RDS’s relative to
a non-normal subgroup of order 2 (see [3]).

If t leaves AA(-Y invariant in Proposition 4.2, then we have the following :

Proposition 4.4 Let A be an Hadamard difference set of order m? in a group
N of order 4m? and () a group of order 2 operating on N as an automorphism
group of N. Let G = N{t) be a semidircct product of N by {t). Then R =
AU(NN\ AL is a (4m?,2,4m2,2m?)RDS in G relative to {t).

Proof. As AACV =m?+ (m? -m)N, AY(AY)D = m?2 4+ (in? = m)N. Hence
A satisfies (i) and (ii) of Proposition 4.2. Therefore, R = A+ (N — A)tis a
(4m2,2,4m2,2m?)RDS in G relative to (t).

In [1], K.T. Arasu, et al. constructed a (2n,2,2n,n)RDS in a group Z2 x N,
where N is a group of order 2n containing an Hadamard difference set. The
above propositiont can be regarded as a slight generalization of their result.
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Example 4.5 Let X be a group of order 4 and set D = {1}{C X). Then D
is an Hadamard difference set of order 1. Assume that a group (y) of order 2
operates on X. By Proposition 4.4, the following hold.

(i) If X = (x1,22) >~ Zy x Z2 and y centralizes X, then {1} U{x|,z2, 2122}y
is a (4,2,4,2)RDS in (x\,z2,y) >~ Zy X Zy x Zy relative to (y).

(i) If X = (z) ~ Z, and y centralizes X, then {1} U {z,22,2*}y is a
(4,2,4,2)RDS in (z,y) ~ Zy x Zo relative to (y).

(iii) If X = (z) ~ Z4 and y inverts X, then {1}U{z, 2%, 2%}y isa (4,2,4,2)RDS
in (x,y) ~ Ds.
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