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1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [6]. In [6],
Thara showed that their reciprocals are explicit polynomials. A zeta function of a regular
graph G associated with a unitary representation of the fundamental group of G was devel-
oped by Sunada [11,12]. Hashimoto [5] generalized Ihara’s result on the zeta function of a
regular graph to an irregular graph, and showed that its reciprocal is again a polynomial
given by a determinant containing the edge matrix. Bass [2] presented another determinant
expression for the Thara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [10] gave an elementary proof of Bass’ Theorem, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were
given by Foata and Zeilberger [3], Kotani and Sunada [7].

As a matrix-variable zeta function of a graph, Watanabe and Fukumizu [13] defined the
matrix-weighted zeta function of a graph and presented its determinant expression.

In this paper, we present a decomposition formula for the matrix-weighted zeta function
of a regular covering of a graph G. Furthermore, we define a matrix-weighted L-function
of G, and give a determinant expression of it. As an application, we express the matrix-
weighted zeta function of a regular covering of G by a product of matrix-weighted L-functions
of G.

Graphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V(G) of vertices and the set F(G) of unoriented
edges uwv joining two vertices v and v. For wv € FE(G), an arc (u,v) is the oriented edge
from u to v. Set D(G) = {(u,v), (v,u) | v € E(G)}. For e = (u,v) € D(G), set u = o(e)
and v = t(e). Furthermore, let e=! = (v,u) be the inverse of e = (u,v).

A path P of length n in G is a sequence P = (ey, -+, ey,) of n arcs such that e; € D(G),
t(e;) = o(e;i4+1)(1 <i < n—1), where indices are treated mod n. If e; = (v;,v;41) (1 <14 < n),
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then we write P = (v1,---,0p41). Set | P |=n, o(P) = o(e1) and t(P) = t(e,). Also, P
is called an (o(P),t(P))-path. We say that a path P = (e1,---,e,) has a backtracking if
e;rll = ¢; for some i(1 < i <n—1). A (v,w)-path is called a v-cycle (or v-closed path) if
v = w. The inverse cycle of a cycle C = (e1,---,e,) is the cycle O~ = (e, ---,e7 ).

We introduce an equivalence relation between cycles. Two cycles Cy; = (eq, - -, e,,) and
Cy = (f1,---, fm) are called equivalent if there exists k such that f; = ej; for all j. The
inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which
contains a cycle C'. Let B" be the cycle obtained by going r times around a cycle B. Such
a cycle is called a power of B. A cycle C is reduced if C' has no backtracking. Furthermore,
a cycle C'is prime if it is not a power of a strictly smaller cycle. Note that each equivalence
class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group 71 (G, v) of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of u € C with |u| sufficiently small,
defined by

Z(G,u) = Zg(u) = [[(1 = w7,

(€]
where [C] runs over all equivalence classes of prime, reduced cycles of G(see [6]).

Let m be the number of edges of G. Furthermore, let two m X m matrices B =
(Be,f)e,sen(a) and Jo = (Je f)e, rep(c) be defined as follows:

Bef_{l if t(e) = o(f), 3 _{1 if f=e1,

0 otherwise, /=) 0 otherwise.

)

Then B — Jj is called the edge matriz of G.

Theorem 1 (Hashimoto; Bass) Let G be a connected graph with n vertices and m edges.
Then the reciprocal of the Ihara zeta function of G is given by

Z(G,u)"t = det(Ia, —u(B — Jg)) = (1 —u?) " det(I,, — uA(G) +u*(D —1,,)),

where r and A(G) are the Betti number and the adjacency matriz of G, respectively, and
D = (d;j) is the diagonal matriz with d;; = degv; where V(G) = {v1,---, v, }.

Next, we state a matrix-weighted zeta function of a graph G. Let G be a connected graph
with n vertices vy, -+, v, and m edges, and (a1, ...,a,) € N™. Set a,, = a;(1 < i < n).
Then, for each e = (v;,v;) € D(G), let w(e) = w(v;,v;) be an a; X a; matrix. The set
{w(e) | e € D(G)} is called the matriz-weight of G. For each cycle C' = (e;,,...,€e;,.), set

w(C) =w(ei,) - w(ei).

Then the matriz-weighted zeta function (g(w) of G is defined by

Ca(w) = [[ det(T—w(0) ",
(]

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Let D(G) = {e1, -, em,e; ", -, e '}. Arrange arcs of G as follows: e1,e7 !, -+, em, e

rm
Let

-1
m -

w(el) 0
U= wier!)



Seta=a;+---+a, and b = ZeeD(G)(GO(e) + ay(ey). Furthermore, let two b x b matrices
B = (Be,f)e,fen(a) and Jo = (Je,f)e,fen(c) be defined as follows:

. B e
B., — { Lo, ., if t(e) = o(f), o= { L, if f=e"",

otherwise, otherwise,

At(e)r@o(f) At(e)rPo(f)

where B, y and J. y are ay(c) X ao(y) matrices.
Next, we define an a x a matrix A = A(G) = (A,,) as follows:

A _{ (Lo, —w(z,y)w(y,z))"'w(z,y) if (z,y) € D(G),

Y Ogya, otherwise.

Furthermore, an a x a matrix D = D(G) = (D,,) is the diagonal matrix defined by

Daw = > w(e)I—w(e " )w(e)) 'w(e™).

o(e)=x
A determinant expression for {¢(w) was given as follows:

Theorem 2 (Watanabe and Fukumizu) Let G be a connected graph, a, € N for each
v € V(G), and {w(e) | e € D(G)} a matriz-weight of G, where w(e) is an aye) X Qy(e)
matriz. Then the reciprocal of the matriz-weighted zeta function of G is given by

Co(w) ™! =det(I, - UB - Jy)) = det(I, + D — A) [ [ det(I, ., — w(e:)w(e; ),
i=1
where n =| V(G) |, m =| E(G) | and D(G) = {ef!,... eE!}.

We use Amitsur’s identity to present a determinant expression for a matrix-weighted L-
function of a graph G. Foata and Zeilberger [3] gave a new proof of Bass’ Theorem by using
the algebra of Lyndon words. Let X be a finite nonempty set, < a total order in X, and
X* the free monoid generated by X. Then the total order < on X derives the lexicographic
order <* on X*. A Lyndon word in X is defined to a nonempty word in X* which is prime,
i.e., not the power [" of any other word [ for any r > 2, and which is also minimal in the
class of its cyclic rearrangements under <*. Let L denote the set of all Lyndon words in X.

Foata and Zeilberger[3] gave a short proof of Amitsur’s identity [1].

Theorem 3 (Amitsur) For square matrices Aq,---, Ag,

det(I— (A1 +---+Ayp)) = Hdet(l —Ay),
leL

where the product runs over all Lyndon words in {1,---,k}, and Ay = Ay ---A;, for
L=y ip.

In this paper, we define a matrix-weighted L-function of a graph G, and give a determi-
nant expression of it.

In Section 2, we present a decomposition formula for the matrix-weighted zeta function
of a regular covering of a graph G. In Section 3, we define a matrix-weighted L-function
of G, and give a determinant expression of it. As a corollary, we obtain a decomposition
formula for the matrix-weighted zeta function of a regular covering of G by matrix-weighted
L-functions of G.



2 Zeta functions of regular coverings of graphs

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € D(G)} denote the
neighbourhood of a vertex v in G. A graph H is called a covering of G with projection
m: H — G if there is a surjection 7 : V(H) — V(G) such that 7|y, : N(v') — N(v)
is a bijection for all vertices v € V(G) and v' € 771(v). When a finite group II acts on a
graph G, the quotient graph G /11 is a graph whose vertices are the IT-orbits on V(G), with
two vertices adjacent in G/II if and only if some two of their representatives are adjacent in
G. A covering w : H — G is said to be regular if there is a subgroup B of the automorphism
group AutH of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and I' a finite group. Then a mapping « : D(G) — T" is called an
ordinary voltage assignment if a(v,u) = a(u,v)~! for each (u,v) € D(G). The pair (G, a)
is called an ordinary voltage graph. The derived graph G¢ of the ordinary voltage graph
(G, ) is defined as follows: V(G*) = V(G) x T and ((u,h), (v,k)) € D(G*) if and only
if (u,v) € D(G) and k = ha(u,v). The natural projection m : G* — G is defined by
m(u, h) = uw. The graph G is called a derived graph covering of G with voltages in T" or a
I'-covering of G. The natural projection m commutes with the right multiplication action
of the a(e),e € D(G) and the left action of I' on the fibers: g(u,h) = (u,gh),g € I', which
is free and transitive. Thus, the I'-covering G* is a | ' |-fold regular covering of G with
covering transformation group I'. Furthermore, every regular covering of a graph G is a
I-covering of G for some group I'(see [4]).

In the I'-covering G, set v, = (v,g) and e, = (e, g), where v € V(G),e € D(G),g €T

For e = (u,v) € D(G), the arc e, emanates from u, and terminates at vyq(c). Note that
1

- -1
eg = (6 )ga(e)-

Let a, € N for each v € V(G), and {w(e) | e € D(G)} a matrix-weight of G, where
w(e) is an ay(e) X ay(e) matrix. Then we define the matriz-weight W of G derived from w

as follows:

w(u,v) if (u,v) € D(GQ) and h = ga(u,v),
0q,,0, Otherwise.

(g th) = {

Let My & - - - @ Mg be the block diagonal sum of square matrices My, -+, M;. If M; =
My =--- =M, =M, then we write soM =M; & --- D M,.

Theorem 4 Let G be a connected graph with n vertices and m edges, I' a finite group,
a : D(G) — T an ordinary voltage assignment, a, € N for each v € V(G), and {w(e) |
e € D(G)} a matriz-weight of G, where w(e) is an Go(e) X aye) matriz. Set | T' |= r.
Furthermore, let py = 1, pa, - -+, pr be the irreducible representations of I', and d; the degree
of pi for each i, where dy = 1. For g € I', the matriz Ay = (a;gy)) is defined as follows:

g0 . { To, = w(zy)w(y, )" w(z,y) if (v,y) € D(G) and o(z,y) = g,
ry - 04, a, otherwise.

Suppose that the I'-covering G* of G is connected. Then the reciprocal of the matriz-
weighted zeta function of G% is

m

k
(oo (W) ™! = H det(Ia,, ~w(e)w(e; )" H det(Lug,—)_ pi(h) @) Ant(1a, Q) D(G))) ™,

hel

where D(G) = {ef!,... efl}.

m

Proof . Let V(G) = {v1, - -,v,} and T = {1 = ¢1,92, -+, gr }- Arrange vertices of G* in
n blocks: (vlv 1)7 Ty (vna 1)a (1)1792)7 ) (Unvg2); Ty (vlagT)v Ty (Unvgr)' We consider two



matrices A(G*) and D(G®) under this order. By Theorem 2, we have

Caa (W)™ = det(I, — A(G?) + D(G)) Hdet(Iao(ei) —wie)w(e; ).

i=1

For h € T', the matrix P, = (pgj )) is defined as follows:

(h) _ 1 if g;h = gy,
Pij 0 otherwise.

Suppose that p(h) = 1, ie, gj = gih. Then ((u,9),(v,9;)) € D(G®) if and only if
(u,v) € D(G) and g; = gie(u,v), ie., a(u,v) = g;lgj = g;lgih = h. Furthermore, if
((u, 9), (v,95)) € D(G*), then we have
(A(Ga))ugi,vgj = (I_w(unggj)vv(vgj,ugi))_lw(ugivvgj)
= (I-w(u,v)w(v,u)) tw(u,v).

:ZPh®Ah.

hel

Thus we have

Next, since w(€) = w(e) and w(é~1) = w(e™!) for e € D(G) and é € 71 (e), we have
BC g = T, WA= w(EHW(@) (e D)
S W) (T — Wl w(e) (e ).

Thus,
D(G*) =1, Q) D(G

Let p be the right regular representation of I'. Furthermore, let p;1 = 1, pa, -+, px be
the irreducible representations of I', and d; the degree of p; for each i, where dy = 1. Then
we have p(h) = Py, for h € . Furthermore, there exists a nonsingular matrix P such
that P~1p(h)P = (1) ® dgy o pa(h) & -+ @ dy, o pr(h) for each h € T(see [9]). Putting

= (P 'QDA(GY)(PQI), we have
F-= Z{ )@ dg o pa(h) ® o@dkopk(h)}®Ah.

her
Note that A(G) = > her Ap and 1+d3 + - - + d;i = r. Therefore it follows that

Cae (W H{Hdet aoien —Wle)w(e; ) det(Laa,— Y pi(h) Q) An+la, QD(G)}

=1 i=1 heTl

Q.E.D.

3 L-functions of graphs

Let G be a connected graph with m edges, T' a finite group, a : D(G) — T an ordinary
voltage assignment, a,, € N for each v € V(G), and {w(e) | e € D(G)} a matrix-weight of
G, where w(e) is an a,() X ay(.) matrix. For each path P = (e1,---,e;) of G, set a(P) =



a(er)---a(er). This is called the net voltage of P. Furthermore, let p be a representation
of I and d its degree.
The matriz-weighted L-function of G associated with p and « is defined by

Ca(w. p.a) = [ [ det(Taa, ., — p(a(C)) Qw(C) ™,

(€]

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Let D(G) = {e1,e; ;... em, e} and

plafer)) @w(er) 0
U, = plaler) @wler")

0

Furthermore, let two bd x bd matrices B, = (Bg’:})e’fep(g) and J, = (J;})e,feD(G) be

defined as follows:

Bip) _ { Id ®Iat(e> if t(e) = O(f)a Jip) _ { Id ®Iat(e) if f = 671’

! Oda, (.. day s otherwise, f Oda,.),da, s otherwise.

A determinant expression for the matrix-weighted L-function of G associated with p and
« is given as follows:

Theorem 5 Let G be a connected graph, a,, € N for eachv € V(G), and {w(e) | e € D(G)}
a matriz-weight of G, where w(e) is an aq(e) X aye) matriz. Suppose that

det(L,, ., — w(e)w(e™)) # 0
for each e € D(G). Then the reciprocal of the matriz-weighted L-function of G is given by

CG(va7a)_1 = det(Ibd - UP(Bﬂ - ‘]P))

— [ det(,..., - wlewle; ) det(Lua + L DE) — 3 p(9) D A,),
=1

ger

where n =| V(G) |, m =| E(G) | and D(G) = {ef!,... eE!}.

m

Proof. Let V(G) = {v1,---,v,} and, let D(G) = {e1, -, em,e; ", -+, e,'}. Arrange
arcs of G as follows: ej,e] ", -, em,e,'. Then two bd x bd matrices Bf, = (BSZ}U)e,fED(G)

and J? = (JSZ}U)e,feD(G) are defined as follows:

plale)) @w(e) if t(e) = o(f), pla(e)) @w(e) if f=et,

oy | | .
ef Oday (o) dao sy otherwise, e.f Oday oy day sy otherwise.

Now, set D(G) = {e1, ", €m,Cm+t1," ", €2m} such that e, ; = ei_l (1 <i<m). For
each arc e; € D(G) (1 < j < 2m), let X, be the b x b matrix whose the dc; 1 +1,---,dc;
rows are the dcj_q + 1,---,dc; rows of Bf — J/  and whose other rows are 0, where c¢; =

Zi:l Ao(ey) for 1 <i <m. Set M =1-— ZeeD(G) Xe. Then, for any sequence of arcs m,

| det(I— p(a(n)) @w(r)) if 7 is a prime, reduced cycle,
det(I - Xr) = { 1 otherwise,

where X, =X, --- X, for 7 = (e; ---e,). By Theorem 3, we have

Ca(w,p,) " = det M = det(Iyq — (Bf, — J%)).



But, we have
U,B,=Bf and U,J, =J,,.

Thus,
B -J, =U,B,—-J,).

w w

Therefore, it follows that
CG(Wv P a)_l = det(Ibd - UP(BP - JP))
Now, let K, = (Kgﬁ)) ceD(G)wev(c) be the bd x ad matrix defined as follows:

K0 . I,Q®1,, ifole)=wv,
ev Oda,(..da, Otherwise.

Furthermore, we define the bd x ad matrix L = (Lé’f,))eeD(G);vev(G) as follows:

L(p) L L ® Iav if t(e) =,
o Oda,(.,,da, otherwise.

Then we have
Lpth =B,.

Thus,
det(Iya — Up(B, — Jy))

= det(Ipg — Up(Lpth - Jp)) = det(Ipg — Uprth + UpJp).
Now, the bd x ad matrix U,L, = (cgf,))eep(g)wev(g) is given as follows:

o) { plafe)) @ wle) ift(e) =,

ev -’ Oda, ., .da, otherwise.

Furthermore, we have

([ 5ok E]) ([ 2 8)

and so,
det(Lg +Upd,) = [ det(Laa,.,, — (plaler) @ w(e))(plale; ) @ wie; )
= H?il det(Idao(ei) -1 ®W(ei)w(6;1))

= [T det(Ig)%o det(T

Go(e;)
= HZL det(Iao(Ei) - W(ei)w(ei_l))d'

By the hypothesis that
det(L,,,, — w(e)w(e ")) #0

for each e € D(G), we have
det(Ibd + UpJp) #0.



Thus, Iqg + U,J, is invertible. Therefore, it follows that
det(Ipg — U,(B, — J,)) = det(Iyg — U,L,"K,(Ipq + U,J,) ") det(Ipq + U,J,).
But, if A and B are a p X ¢ and g X p matrices, respectively, then we have
det(I, — AB) = det(I, — BA).
Thus, we have
det(Ing —U,(B, - J,))
= det(Ioa — 'K,(Ina+U,J,) ' U,L,) det(Iyqg + U,J ).
Next, we have

{1 F}_l{ I-FH)"! —F(I-HF)"!
H I| ~ | -HI-FH! (I-HF"!

Thus, we have

(L @ — w(er)w(ey ')~
Ly +U,3,)" = | —(plaler) @ w(er))(Ta @I — w(er)w(ey )™

~(plafer) @w(e1)(La @I — w(er w(er)) ™
(L@ — wle w(e)) ™!

Since (IQF)I®H) ! =IQFH !, we have

L@t —plaler) @wlesr
(ot U3, = | —plofer ) @wle ey L®ur |
where z; = I, | —wie)w(e; ') and y; = L., — w(e; Hw(e;) for 1 <i < m.

But, for an arc (x,y) € D(G),

(th(Ibd + UpJp)ilUpr)xy = p(Oé(JZ, y)) ®(Iaz - W(l‘, y)W(y, x))ilw(aﬁ y)

Furthermore, if x = y, then

("Ky(Toa+Upd,) U Ly)us = 10 D wle)(Ta,,, —wle Hw(e)) w(e™).
o(e)=z
Thus,
det(Tog — 'K, (Ta + U,3,) U, L,) = det(Tg + LR DG) - 3 pl9) Q) Ay)
gel

Therefore, it follows that

Ca(w, p,a H det(I,,, | — w(e)w(e; ) det(Tog + L R D(G) — > plg) Q) Ay).

gel

Q.E.D.
By Theorems 4,5, the following result holds.



Corollary 1 Let G be a connected graph, T a finite group, o : D(G) — T an ordinary
voltage assignment and {w(e) | e € D(G)} a matriz-weight of G. Then we have

CGO‘ (‘;V) = H CG (W, P, a)degp,
p

where p runs over all inequivalent irreducible representations of T'.

4 Special case

Let G be a connected graph, a, € N for each v € V(G), and {w(e) | e € D(G)} a matrix-
weight of G, where w(e) is an a,(e) X ay(e) matrix.

Now, suppose that a, = a (constant) € N for any v € V(G) and w(e™!) = w(e)~! for
each e € D(G). Then we define a special matrix-weighted zeta function of G as follows:

Caw.t) = [T - w(e)h),
[C]

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Considering the matrix-weighted zeta function of a graph G for the matrix-weight
{w(e)t | e € D(G)}, we obtain a determinant expression for (g (w,1).

Corollary 2 Let G be a connected graph with n vertices and m edges, a € N, and {w(e)t |
e € D(G)} a matriz-weight of G, where w(e) is an a X a matriz.
Then the reciprocal of (a(w,t) for G is given by

Co(w,t) ™ = (1= £2)"=" det(L,, — tW(G) + (D — 1,) Q) L),
where the an x an matric W(G) = (Way )z yev(a) 5 given as follows:

w = Wy if (z,y) € D(G),
Y 0, otherwise.

Proof. Since w(e™1) = w(e) ! for each e € D(G), we have w(e)w(e 1) = w(e !)w(e) =
I,. By Theorem 2, we have

Calw,t)™t = ﬁdet(Ia — ’1,) det(L,, + D(G) — A).

=1
But, we have
R t2 . t
D= mD@Ia, A=—5W(G)
Thus,
Co(w,t) "= (1 —t3)madet(I,, —t/(1 -t )W(G) +t2/(1 —t*) DR L,)

= (1—t3)m=maedet(1,, —tW(G)+t*(D-1,) ®IL,).

Q.E.D.
In the case of a = 1, the zeta function (g(w,t) of G is the weighted zeta function
Z(G,w,t) of G introduced by Mizuno and Sato [8]:

2(G,w,) = [J(1 - w(@)r) T,
(€]

where [C] runs over all equivalence classes of prime, reduced cycles of G.
By Corollary 2, we obtain a determinant expression for the weighted zeta function of a
graph.



Corollary 3 (Mizuno and Sato) Let G be a connected graph with n vertices and m edges,
{w(e)t | e € D(G)} a scalar-weight of G. Suppose that w(e™t) = w(e)~t for each e € D(G).
Then the reciprocal of Z(G,w,t) is given by

Z(G,w,t)"t = (1 —tH)™ " det(I, — tW(G) + t*(D — 1,,)),

where W(G) is an n X n matriz.
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