A MATRIX-WEIGHTED ZETA FUNCTION OF A GRAPH

Iwao SATO*, Oyama National College of Technology, Oyama
Tochigi 323-0806, JAPAN
Hideo MITSUHASHI
Faculty of Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, JAPAN
Hideaki MORITA
Division of System Engineering for Mathematics, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, JAPAN

June 29, 2016

1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [6]. In [6], Ihara showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [11,12]. Hashimoto [5] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial given by a determinant containing the edge matrix. Bass [2] presented another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [10] gave an elementary proof of Bass' Theorem, and discussed three different zeta functions of any graph. Furthermore, various proofs of Bass' Theorem were given by Foata and Zeilberger [3], Kotani and Sunada [7].

As a matrix-variable zeta function of a graph, Watanabe and Fukumizu [13] defined the matrix-weighted zeta function of a graph and presented its determinant expression.

In this paper, we present a decomposition formula for the matrix-weighted zeta function of a regular covering of a graph G. Furthermore, we define a matrix-weighted L-function of G, and give a determinant expression of it. As an application, we express the matrixweighted zeta function of a regular covering of G by a product of matrix-weighted L-functions of G.

Graphs treated here are finite. Let $G=(V(G), E(G))$ be a connected graph (possibly multiple edges and loops) with the set $V(G)$ of vertices and the set $E(G)$ of unoriented edges $u v$ joining two vertices u and v. For $u v \in E(G)$, an $\operatorname{arc}(u, v)$ is the oriented edge from u to v. Set $D(G)=\{(u, v),(v, u) \mid u v \in E(G)\}$. For $e=(u, v) \in D(G)$, set $u=o(e)$ and $v=t(e)$. Furthermore, let $e^{-1}=(v, u)$ be the inverse of $e=(u, v)$.

A path P of length n in G is a sequence $P=\left(e_{1}, \cdots, e_{n}\right)$ of n arcs such that $e_{i} \in D(G)$, $t\left(e_{i}\right)=o\left(e_{i+1}\right)(1 \leq i \leq n-1)$, where indices are treated $\bmod n$. If $e_{i}=\left(v_{i}, v_{i+1}\right)(1 \leq i \leq n)$,

[^0]then we write $P=\left(v_{1}, \cdots, v_{n+1}\right)$. Set $|P|=n, o(P)=o\left(e_{1}\right)$ and $t(P)=t\left(e_{n}\right)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P=\left(e_{1}, \cdots, e_{n}\right)$ has a backtracking if $e_{i+1}^{-1}=e_{i}$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v=w$. The inverse cycle of a cycle $C=\left(e_{1}, \cdots, e_{n}\right)$ is the cycle $C^{-1}=\left(e_{n}^{-1}, \cdots, e_{1}^{-1}\right)$.

We introduce an equivalence relation between cycles. Two cycles $C_{1}=\left(e_{1}, \cdots, e_{m}\right)$ and $C_{2}=\left(f_{1}, \cdots, f_{m}\right)$ are called equivalent if there exists k such that $f_{j}=e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let $[C]$ be the equivalence class which contains a cycle C. Let B^{r} be the cycle obtained by going r times around a cycle B. Such a cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_{1}(G, v)$ of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of $u \in \mathbf{C}$ with $|u|$ sufficiently small, defined by

$$
\mathbf{Z}(G, u)=\mathbf{Z}_{G}(u)=\prod_{[C]}\left(1-u^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G (see [6]).
Let m be the number of edges of G. Furthermore, let two $m \times m$ matrices $\mathbf{B}=$ $\left(\mathbf{B}_{e, f}\right)_{e, f \in D(G)}$ and $\mathbf{J}_{0}=\left(\mathbf{J}_{e, f}\right)_{e, f \in D(G)}$ be defined as follows:

$$
\mathbf{B}_{e, f}=\left\{\begin{array}{ll}
1 & \text { if } t(e)=o(f), \\
0 & \text { otherwise }
\end{array} \quad \mathbf{J}_{e, f}= \begin{cases}1 & \text { if } f=e^{-1} \\
0 & \text { otherwise }\end{cases}\right.
$$

Then $\mathbf{B}-\mathbf{J}_{0}$ is called the edge matrix of G.
Theorem 1 (Hashimoto; Bass) Let G be a connected graph with n vertices and m edges. Then the reciprocal of the Ihara zeta function of G is given by

$$
\mathbf{Z}(G, u)^{-1}=\operatorname{det}\left(\mathbf{I}_{2 m}-u\left(\mathbf{B}-\mathbf{J}_{0}\right)\right)=\left(1-u^{2}\right)^{r-1} \operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}(G)+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right),
$$

where r and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of G, respectively, and $\mathbf{D}=\left(d_{i j}\right)$ is the diagonal matrix with $d_{i i}=\operatorname{deg} v_{i}$ where $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$.

Next, we state a matrix-weighted zeta function of a graph G. Let G be a connected graph with n vertices v_{1}, \cdots, v_{n} and m edges, and $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{N}^{n}$. Set $a_{v_{i}}=a_{i}(1 \leq i \leq n)$. Then, for each $e=\left(v_{i}, v_{j}\right) \in D(G)$, let $\mathbf{w}(e)=\mathbf{w}\left(v_{i}, v_{j}\right)$ be an $a_{i} \times a_{j}$ matrix. The set $\{\mathbf{w}(e) \mid e \in D(G)\}$ is called the matrix-weight of G. For each cycle $C=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$, set

$$
\mathbf{w}(C)=\mathbf{w}\left(e_{i_{1}}\right) \cdots \mathbf{w}\left(e_{i_{k}}\right)
$$

Then the matrix-weighted zeta function $\zeta_{G}(\mathbf{w})$ of G is defined by

$$
\zeta_{G}(\mathbf{w})=\prod_{[C]} \operatorname{det}(\mathbf{I}-\mathbf{w}(C))^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G.
Let $D(G)=\left\{e_{1}, \cdots, e_{m}, e_{1}^{-1}, \cdots, e_{m}^{-1}\right\}$. Arrange arcs of G as follows: $e_{1}, e_{1}^{-1}, \cdots, e_{m}, e_{m}^{-1}$. Let

$$
\mathbf{U}=\left[\begin{array}{ccc}
\mathbf{w}\left(e_{1}\right) & & \mathbf{0} \\
& \mathbf{w}\left(e_{1}^{-1}\right) & \\
\mathbf{0} & & \ddots
\end{array}\right] .
$$

Set $a=a_{1}+\cdots+a_{n}$ and $b=\sum_{e \in D(G)}\left(a_{o(e)}+a_{t(e)}\right)$. Furthermore, let two $b \times b$ matrices $\mathbf{B}=\left(\mathbf{B}_{e, f}\right)_{e, f \in D(G)}$ and $\mathbf{J}_{0}=\left(\mathbf{J}_{e, f}\right)_{e, f \in D(G)}$ be defined as follows:

$$
\mathbf{B}_{e, f}=\left\{\begin{array}{ll}
\mathbf{I}_{a_{t(e)}} & \text { if } t(e)=o(f), \\
\mathbf{0}_{a_{t(e)}, a_{o(f)}} & \text { otherwise },
\end{array} \quad \mathbf{J}_{e, f}= \begin{cases}\mathbf{I}_{a_{t(e)}} & \text { if } f=e^{-1}, \\
\mathbf{0}_{a_{t(e)}, a_{o(f)}} & \text { otherwise },\end{cases}\right.
$$

where $\mathbf{B}_{e, f}$ and $\mathbf{J}_{e, f}$ are $a_{t(e)} \times a_{o(f)}$ matrices.
Next, we define an $a \times a$ matrix $\hat{\mathbf{A}}=\hat{\mathbf{A}}(G)=\left(A_{x y}\right)$ as follows:

$$
A_{x y}= \begin{cases}\left(\mathbf{I}_{a_{x}}-\mathbf{w}(x, y) \mathbf{w}(y, x)\right)^{-1} \mathbf{w}(x, y) & \text { if }(x, y) \in D(G) \\ \mathbf{0}_{a_{x}, a_{y}} & \text { otherwise }\end{cases}
$$

Furthermore, an $a \times a$ matrix $\hat{\mathbf{D}}=\hat{\mathbf{D}}(G)=\left(D_{x y}\right)$ is the diagonal matrix defined by

$$
D_{x x}=\sum_{o(e)=x} \mathbf{w}(e)\left(\mathbf{I}-\mathbf{w}\left(e^{-1}\right) \mathbf{w}(e)\right)^{-1} \mathbf{w}\left(e^{-1}\right)
$$

A determinant expression for $\zeta_{G}(\mathbf{w})$ was given as follows:
Theorem 2 (Watanabe and Fukumizu) Let G be a connected graph, $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix. Then the reciprocal of the matrix-weighted zeta function of G is given by

$$
\zeta_{G}(\mathbf{w})^{-1}=\operatorname{det}\left(\mathbf{I}_{b}-\mathbf{U}\left(\mathbf{B}-\mathbf{J}_{0}\right)\right)=\operatorname{det}\left(\mathbf{I}_{a}+\hat{\mathbf{D}}-\hat{\mathbf{A}}\right) \prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)
$$

where $n=|V(G)|, m=|E(G)|$ and $D(G)=\left\{e_{1}^{ \pm 1}, \ldots, e_{m}^{ \pm 1}\right\}$.
We use Amitsur's identity to present a determinant expression for a matrix-weighted L function of a graph G. Foata and Zeilberger [3] gave a new proof of Bass' Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, $<$ a total order in X, and X^{*} the free monoid generated by X. Then the total order $<$ on X derives the lexicographic order $<^{*}$ on X^{*}. A Lyndon word in X is defined to a nonempty word in X^{*} which is prime, i.e., not the power l^{r} of any other word l for any $r \geq 2$, and which is also minimal in the class of its cyclic rearrangements under $<^{*}$. Let L denote the set of all Lyndon words in X.

Foata and Zeilberger[3] gave a short proof of Amitsur's identity [1].
Theorem 3 (Amitsur) For square matrices $\mathbf{A}_{1}, \cdots, \mathbf{A}_{k}$,

$$
\operatorname{det}\left(\mathbf{I}-\left(\mathbf{A}_{1}+\cdots+\mathbf{A}_{k}\right)\right)=\prod_{l \in L} \operatorname{det}\left(\mathbf{I}-\mathbf{A}_{l}\right)
$$

where the product runs over all Lyndon words in $\{1, \cdots, k\}$, and $\mathbf{A}_{l}=\mathbf{A}_{i_{1}} \cdots \mathbf{A}_{i_{p}}$ for $l=i_{1} \cdots i_{p}$.

In this paper, we define a matrix-weighted L-function of a graph G, and give a determinant expression of it.

In Section 2, we present a decomposition formula for the matrix-weighted zeta function of a regular covering of a graph G. In Section 3, we define a matrix-weighted L-function of G, and give a determinant expression of it. As a corollary, we obtain a decomposition formula for the matrix-weighted zeta function of a regular covering of G by matrix-weighted L-functions of G.

2 Zeta functions of regular coverings of graphs

Let G be a connected graph, and let $N(v)=\{w \in V(G) \mid(v, w) \in D(G)\}$ denote the neighbourhood of a vertex v in G. A graph H is called a covering of G with projection $\pi: H \longrightarrow G$ if there is a surjection $\pi: V(H) \longrightarrow V(G)$ such that $\left.\pi\right|_{N\left(v^{\prime}\right)}: N\left(v^{\prime}\right) \longrightarrow N(v)$ is a bijection for all vertices $v \in V(G)$ and $v^{\prime} \in \pi^{-1}(v)$. When a finite group Π acts on a graph G, the quotient graph G / Π is a graph whose vertices are the Π-orbits on $V(G)$, with two vertices adjacent in G / Π if and only if some two of their representatives are adjacent in G. A covering $\pi: H \longrightarrow G$ is said to be regular if there is a subgroup B of the automorphism group $A u t H$ of H acting freely on H such that the quotient graph H / B is isomorphic to G.

Let G be a graph and Γ a finite group. Then a mapping $\alpha: D(G) \longrightarrow \Gamma$ is called an ordinary voltage assignment if $\alpha(v, u)=\alpha(u, v)^{-1}$ for each $(u, v) \in D(G)$. The pair (G, α) is called an ordinary voltage graph. The derived graph G^{α} of the ordinary voltage graph (G, α) is defined as follows: $V\left(G^{\alpha}\right)=V(G) \times \Gamma$ and $((u, h),(v, k)) \in D\left(G^{\alpha}\right)$ if and only if $(u, v) \in D(G)$ and $k=h \alpha(u, v)$. The natural projection $\pi: G^{\alpha} \longrightarrow G$ is defined by $\pi(u, h)=u$. The graph G^{α} is called a derived graph covering of G with voltages in Γ or a Γ-covering of G. The natural projection π commutes with the right multiplication action of the $\alpha(e), e \in D(G)$ and the left action of Γ on the fibers: $g(u, h)=(u, g h), g \in \Gamma$, which is free and transitive. Thus, the Γ-covering G^{α} is a $|\Gamma|$-fold regular covering of G with covering transformation group Γ. Furthermore, every regular covering of a graph G is a Γ-covering of G for some group Γ (see [4]).

In the Γ-covering G^{α}, set $v_{g}=(v, g)$ and $e_{g}=(e, g)$, where $v \in V(G), e \in D(G), g \in \Gamma$. For $e=(u, v) \in D(G)$, the arc e_{g} emanates from u_{g} and terminates at $v_{g \alpha(e)}$. Note that $e_{g}^{-1}=\left(e^{-1}\right)_{g \alpha(e)}$.

Let $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix. Then we define the matrix-weight $\tilde{\mathbf{w}}$ of G^{α} derived from \mathbf{w} as follows:

$$
\tilde{\mathbf{w}}\left(u_{g}, v_{h}\right):= \begin{cases}\mathbf{w}(u, v) & \text { if }(u, v) \in D(G) \text { and } h=g \alpha(u, v), \\ \mathbf{0}_{a_{u}, a_{v}} & \text { otherwise } .\end{cases}
$$

Let $\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{s}$ be the block diagonal sum of square matrices $\mathbf{M}_{1}, \cdots, \mathbf{M}_{s}$. If $\mathbf{M}_{1}=$ $\mathbf{M}_{2}=\cdots=\mathbf{M}_{s}=\mathbf{M}$, then we write $s \circ \mathbf{M}=\mathbf{M}_{1} \oplus \cdots \oplus \mathbf{M}_{s}$.

Theorem 4 Let G be a connected graph with n vertices and m edges, Γ a finite group, $\alpha: D(G) \longrightarrow \Gamma$ an ordinary voltage assignment, $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid$ $e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix. Set $|\Gamma|=r$. Furthermore, let $\rho_{1}=1, \rho_{2}, \cdots, \rho_{k}$ be the irreducible representations of Γ, and d_{i} the degree of ρ_{i} for each i, where $d_{1}=1$. For $g \in \Gamma$, the matrix $\mathbf{A}_{g}=\left(a_{x y}^{(g)}\right)$ is defined as follows:

$$
a_{x y}^{(g)}:= \begin{cases}\left(\mathbf{I}_{a_{x}}-\mathbf{w}(x, y) \mathbf{w}(y, x)\right)^{-1} \mathbf{w}(x, y) & \text { if }(x, y) \in D(G) \text { and } \alpha(x, y)=g, \\ \mathbf{0}_{a_{x}, a_{y}} & \text { otherwise. }\end{cases}
$$

Suppose that the Γ-covering G^{α} of G is connected. Then the reciprocal of the matrixweighted zeta function of G^{α} is
$\zeta_{G^{\alpha}}(\tilde{\mathbf{w}})^{-1}=\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{r} \prod_{i=1}^{k} \operatorname{det}\left(\mathbf{I}_{a d_{i}}-\sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{h}+\left(\mathbf{I}_{d_{i}} \bigotimes \hat{\mathbf{D}}(G)\right)\right)^{d_{i}}$,
where $D(G)=\left\{e_{1}^{ \pm 1}, \ldots, e_{m}^{ \pm 1}\right\}$.
Proof. Let $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$ and $\Gamma=\left\{1=g_{1}, g_{2}, \cdots, g_{r}\right\}$. Arrange vertices of G^{α} in n blocks: $\left(v_{1}, 1\right), \cdots,\left(v_{n}, 1\right) ;\left(v_{1}, g_{2}\right), \cdots,\left(v_{n}, g_{2}\right) ; \cdots ;\left(v_{1}, g_{r}\right), \cdots,\left(v_{n}, g_{r}\right)$. We consider two
matrices $\hat{\mathbf{A}}\left(G^{\alpha}\right)$ and $\hat{\mathbf{D}}\left(G^{\alpha}\right)$ under this order. By Theorem 2, we have

$$
\zeta_{G^{\alpha}}(\tilde{\mathbf{w}})^{-1}=\operatorname{det}\left(\mathbf{I}_{a r}-\hat{\mathbf{A}}\left(G^{\alpha}\right)+\hat{\mathbf{D}}\left(G^{\alpha}\right)\right) \prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{r}
$$

For $h \in \Gamma$, the matrix $\mathbf{P}_{h}=\left(p_{i j}^{(h)}\right)$ is defined as follows:

$$
p_{i j}^{(h)}= \begin{cases}1 & \text { if } g_{i} h=g_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that $p_{i j}^{(h)}=1$, i.e., $g_{j}=g_{i} h$. Then $\left(\left(u, g_{i}\right),\left(v, g_{j}\right)\right) \in D\left(G^{\alpha}\right)$ if and only if $(u, v) \in D(G)$ and $g_{j}=g_{i} \alpha(u, v)$, i.e., $\alpha(u, v)=g_{i}^{-1} g_{j}=g_{i}^{-1} g_{i} h=h$. Furthermore, if $\left(\left(u, g_{i}\right),\left(v, g_{j}\right)\right) \in D\left(G^{\alpha}\right)$, then we have

$$
\begin{aligned}
\left(\hat{\mathbf{A}}\left(G^{\alpha}\right)\right)_{u_{g_{i}}, v_{g_{j}}} & =\left(\mathbf{I}-\tilde{\mathbf{w}}\left(u_{g_{i}}, v_{g_{j}}\right) \tilde{\mathbf{w}}\left(v_{g_{j}}, u_{g_{i}}\right)\right)^{-1} \tilde{\mathbf{w}}\left(u_{g_{i}}, v_{g_{j}}\right) \\
& =(\mathbf{I}-\mathbf{w}(u, v) \mathbf{w}(v, u))^{-1} \mathbf{w}(u, v) .
\end{aligned}
$$

Thus we have

$$
\hat{\mathbf{A}}\left(G^{\alpha}\right)=\sum_{h \in \Gamma} \mathbf{P}_{h} \bigotimes \mathbf{A}_{h}
$$

Next, since $\tilde{\mathbf{w}}(\tilde{e})=\mathbf{w}(e)$ and $\tilde{\mathbf{w}}\left(\tilde{e}^{-1}\right)=\mathbf{w}\left(e^{-1}\right)$ for $e \in D(G)$ and $\tilde{e} \in \pi^{-1}(e)$, we have

$$
\begin{aligned}
\left(\hat{\mathbf{D}}\left(G^{\alpha}\right)\right)_{u_{g_{i}}, u_{g_{i}}} & =\sum_{o(\tilde{e})=u_{g_{i}}} \tilde{\mathbf{w}}(\tilde{e})\left(\mathbf{I}-\tilde{\mathbf{w}}\left(\tilde{e}^{-1}\right) \tilde{\mathbf{w}}(\tilde{e})\right)^{-1} \tilde{\mathbf{w}}\left(\tilde{e}^{-1}\right) \\
& =\sum_{o(e)=u} \mathbf{w}(e)\left(\mathbf{I}-\mathbf{w}\left(e^{-1}\right) \mathbf{w}(e)\right)^{-1} \mathbf{w}\left(e^{-1}\right)
\end{aligned}
$$

Thus,

$$
\hat{\mathbf{D}}\left(G^{\alpha}\right)=\mathbf{I}_{r} \bigotimes \hat{\mathbf{D}}(G)
$$

Let ρ be the right regular representation of Γ. Furthermore, let $\rho_{1}=1, \rho_{2}, \cdots, \rho_{k}$ be the irreducible representations of Γ, and d_{i} the degree of ρ_{i} for each i, where $d_{1}=1$. Then we have $\rho(h)=\mathbf{P}_{h}$ for $h \in \Gamma$. Furthermore, there exists a nonsingular matrix \mathbf{P} such that $\mathbf{P}^{-1} \rho(h) \mathbf{P}=(1) \oplus d_{2} \circ \rho_{2}(h) \oplus \cdots \oplus d_{k} \circ \rho_{k}(h)$ for each $h \in \Gamma$ (see [9]). Putting $\mathbf{F}=\left(\mathbf{P}^{-1} \otimes \mathbf{I}\right) \hat{\mathbf{A}}\left(G^{\alpha}\right)(\mathbf{P} \otimes \mathbf{I})$, we have

$$
\mathbf{F}=\sum_{h \in \Gamma}\left\{(1) \oplus d_{2} \circ \rho_{2}(h) \oplus \cdots \oplus d_{k} \circ \rho_{k}(h)\right\} \bigotimes \mathbf{A}_{h}
$$

Note that $\hat{\mathbf{A}}(G)=\sum_{h \in \Gamma} \mathbf{A}_{h}$ and $1+d_{2}^{2}+\cdots+d_{k}^{2}=r$. Therefore it follows that $\zeta_{G^{\alpha}}(\tilde{\mathbf{w}})^{-1}=\prod_{i=1}^{k}\left\{\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{d_{i}} \operatorname{det}\left(\mathbf{I}_{a d_{i}}-\sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{h}+\mathbf{I}_{d_{i}} \bigotimes \hat{\mathbf{D}}(G)\right)\right\}^{d_{i}}$. Q.E.D.

3 L-functions of graphs

Let G be a connected graph with m edges, Γ a finite group, $\alpha: D(G) \longrightarrow \Gamma$ an ordinary voltage assignment, $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix. For each path $P=\left(e_{1}, \cdots, e_{r}\right)$ of G, set $\alpha(P)=$
$\alpha\left(e_{1}\right) \cdots \alpha\left(e_{r}\right)$. This is called the net voltage of P. Furthermore, let ρ be a representation of Γ and d its degree.

The matrix-weighted L-function of G associated with ρ and α is defined by

$$
\zeta_{G}(\mathbf{w}, \rho, \alpha)=\prod_{[C]} \operatorname{det}\left(\mathbf{I}_{d a_{o(C)}}-\rho(\alpha(C)) \bigotimes \mathbf{w}(C)\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G.
Let $D(G)=\left\{e_{1}, e_{1}^{-1}, \ldots, e_{m}, e_{m}^{-1}\right\}$ and

$$
\mathbf{U}_{\rho}=\left[\begin{array}{ccc}
\rho\left(\alpha\left(e_{1}\right)\right) \otimes \mathbf{w}\left(e_{1}\right) & & \mathbf{0} \\
& \rho\left(\alpha\left(e_{1}^{-1}\right)\right) \otimes \mathbf{w}\left(e_{1}^{-1}\right) & \\
\mathbf{0} & & \ddots
\end{array}\right]
$$

Furthermore, let two $b d \times b d$ matrices $\mathbf{B}_{\rho}=\left(\mathbf{B}_{e, f}^{(\rho)}\right)_{e, f \in D(G)}$ and $\mathbf{J}_{\rho}=\left(\mathbf{J}_{e, f}^{(\rho)}\right)_{e, f \in D(G)}$ be defined as follows:

$$
\mathbf{B}_{e, f}^{(\rho)}=\left\{\begin{array}{ll}
\mathbf{I}_{d} \otimes \mathbf{I}_{a_{t(e)}} & \text { if } t(e)=o(f), \\
\mathbf{0}_{d a_{t(e)}, d a_{o(f)}} & \text { otherwise },
\end{array} \quad \mathbf{J}_{e, f}^{(\rho)}= \begin{cases}\mathbf{I}_{d} \otimes \mathbf{I}_{a_{t(e)}} & \text { if } f=e^{-1} \\
\mathbf{0}_{d a_{t(e)}, d a_{o(f)}} & \text { otherwise }\end{cases}\right.
$$

A determinant expression for the matrix-weighted L-function of G associated with ρ and α is given as follows:

Theorem 5 Let G be a connected graph, $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix. Suppose that

$$
\operatorname{det}\left(\mathbf{I}_{a_{o(e)}}-\mathbf{w}(e) \mathbf{w}\left(e^{-1}\right)\right) \neq 0
$$

for each $e \in D(G)$. Then the reciprocal of the matrix-weighted L-function of G is given by

$$
\begin{gathered}
\zeta_{G}(\mathbf{w}, \rho, \alpha)^{-1}=\operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)\right) \\
=\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{d} \operatorname{det}\left(\mathbf{I}_{a d}+\mathbf{I}_{d} \bigotimes \hat{\mathbf{D}}(G)-\sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{g}\right),
\end{gathered}
$$

where $n=|V(G)|, m=|E(G)|$ and $D(G)=\left\{e_{1}^{ \pm 1}, \ldots, e_{m}^{ \pm 1}\right\}$.
Proof. Let $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$ and, let $D(G)=\left\{e_{1}, \cdots, e_{m}, e_{1}^{-1}, \cdots, e_{m}^{-1}\right\}$. Arrange arcs of G as follows: $e_{1}, e_{1}^{-1}, \cdots, e_{m}, e_{m}^{-1}$. Then two $b d \times b d$ matrices $\mathbf{B}_{w}^{\rho}=\left(\mathbf{B}_{e, f}^{\rho, w}\right)_{e, f \in D(G)}$ and $\mathbf{J}_{w}^{\rho}=\left(\mathbf{J}_{e, f}^{\rho, w}\right)_{e, f \in D(G)}$ are defined as follows:

$$
\mathbf{B}_{e, f}^{\rho, w}=\left\{\begin{array}{ll}
\rho(\alpha(e)) \otimes \mathbf{w}(e) & \text { if } t(e)=o(f), \\
\mathbf{0}_{d a_{t(e)}, d a_{o(f)}} & \text { otherwise },
\end{array} \quad \mathbf{J}_{e, f}^{\rho, w}= \begin{cases}\rho(\alpha(e)) \otimes \mathbf{w}(e) & \text { if } f=e^{-1} \\
\mathbf{0}_{d a_{t(e)}, d a_{o(f)}} & \text { otherwise }\end{cases}\right.
$$

Now, set $D(G)=\left\{e_{1}, \cdots, e_{m}, e_{m+1}, \cdots, e_{2 m}\right\}$ such that $e_{m+i}=e_{i}^{-1}(1 \leq i \leq m)$. For each arc $e_{j} \in D(G)(1 \leq j \leq 2 m)$, let $\mathbf{X}_{e_{j}}$ be the $b \times b$ matrix whose the $d c_{j-1}+1, \cdots, d c_{j}$ rows are the $d c_{j-1}+1, \cdots, d c_{j}$ rows of $\mathbf{B}_{w}^{\rho}-\mathbf{J}_{w}^{\rho}$, and whose other rows are $\mathbf{0}$, where $c_{j}=$ $\sum_{k=1}^{j} a_{o\left(e_{k}\right)}$ for $1 \leq i \leq m$. Set $\mathbf{M}=\mathbf{I}-\sum_{e \in D(G)} \mathbf{X}_{e}$. Then, for any sequence of $\operatorname{arcs} \pi$,

$$
\operatorname{det}\left(\mathbf{I}-\mathbf{X}_{\pi}\right)= \begin{cases}\operatorname{det}(\mathbf{I}-\rho(\alpha(\pi)) \otimes \mathbf{w}(\pi)) & \text { if } \pi \text { is a prime, reduced cycle } \\ 1 & \text { otherwise }\end{cases}
$$

where $\mathbf{X}_{\pi}=\mathbf{X}_{e_{1}} \cdots \mathbf{X}_{e_{r}}$ for $\pi=\left(e_{1} \cdots e_{r}\right)$. By Theorem 3, we have

$$
\zeta_{G}(\mathbf{w}, \rho, \alpha)^{-1}=\operatorname{det} \mathbf{M}=\operatorname{det}\left(\mathbf{I}_{b d}-\left(\mathbf{B}_{w}^{\rho}-\mathbf{J}_{w}^{\rho}\right)\right)
$$

But, we have

$$
\mathbf{U}_{\rho} \mathbf{B}_{\rho}=\mathbf{B}_{w}^{\rho} \text { and } \mathbf{U}_{\rho} \mathbf{J}_{\rho}=\mathbf{J}_{w}^{\rho} .
$$

Thus,

$$
\mathbf{B}_{w}^{\rho}-\mathbf{J}_{w}^{\rho}=\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)
$$

Therefore, it follows that

$$
\zeta_{G}(\mathbf{w}, \rho, \alpha)^{-1}=\operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)\right) .
$$

Now, let $\mathbf{K}_{\rho}=\left(\mathbf{K}_{e v}^{(\rho)}\right) \quad e \in D(G) ; v \in V(G)$ be the $b d \times a d$ matrix defined as follows:

$$
\mathbf{K}_{e v}^{(\rho)}:= \begin{cases}\mathbf{I}_{d} \otimes \mathbf{I}_{a_{v}} & \text { if } o(e)=v, \\ \mathbf{0}_{d a_{o(e)}, d a_{v}} & \text { otherwise. }\end{cases}
$$

Furthermore, we define the $b d \times a d$ matrix $\mathbf{L}=\left(\mathbf{L}_{e v}^{(\rho)}\right)_{e \in D(G) ; v \in V(G)}$ as follows:

$$
\mathbf{L}_{e v}^{(\rho)}:= \begin{cases}\mathbf{I}_{d} \bigotimes \mathbf{I}_{a_{v}} & \text { if } t(e)=v \\ \mathbf{0}_{d a_{t(e)}, d a_{v}} & \text { otherwise }\end{cases}
$$

Then we have

$$
\mathbf{L}_{\rho}{ }^{t} \mathbf{K}_{\rho}=\mathbf{B}_{\rho} .
$$

Thus,

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)\right) \\
= & \operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{L}_{\rho}{ }^{t} \mathbf{K}_{\rho}-\mathbf{J}_{\rho}\right)\right)=\operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho} \mathbf{L}_{\rho}{ }^{t} \mathbf{K}_{\rho}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right) .
\end{aligned}
$$

Now, the $b d \times a d$ matrix $\mathbf{U}_{\rho} \mathbf{L}_{\rho}=\left(c_{e v}^{(\rho)}\right)_{e \in D(G) ; v \in V(G)}$ is given as follows:

$$
c_{e v}^{(\rho)}:= \begin{cases}\rho(\alpha(e)) \otimes \mathbf{w}(e) & \text { if } t(e)=v \\ \mathbf{0}_{d a_{t(e)}, d a_{v}} & \text { otherwise }\end{cases}
$$

Furthermore, we have

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{F} \\
\mathbf{H} & \mathbf{I}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{F} \\
\mathbf{H} & \mathbf{I}
\end{array}\right]\right) \cdot \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{H} & \mathbf{I}
\end{array}\right]\right) \\
= & \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{I}-\mathbf{F H} & \mathbf{F} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\right)=\operatorname{det}(\mathbf{I}-\mathbf{F H}),
\end{aligned}
$$

and so,

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right) & =\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{d a_{o\left(e_{i}\right)}}-\left(\rho\left(\alpha\left(e_{i}\right)\right) \otimes \mathbf{w}\left(e_{i}\right)\right)\left(\rho\left(\alpha\left(e_{i}^{-1}\right)\right) \otimes \mathbf{w}\left(e_{i}^{-1}\right)\right)\right. \\
& =\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{d a_{o\left(e_{i}\right)}}-\mathbf{I}_{d} \otimes \mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right) \\
& =\prod_{i=1}^{m_{1}} \operatorname{det}\left(\mathbf{I}_{d}\right)^{a_{o\left(e_{i}\right)}} \operatorname{det}\left(\mathbf{I}_{o\left(e_{i}\right)}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{d} \\
& =\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{o\left(e_{i}\right)}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{d} .
\end{aligned}
$$

By the hypothesis that

$$
\operatorname{det}\left(\mathbf{I}_{a_{o(e)}}-\mathbf{w}(e) \mathbf{w}\left(e^{-1}\right)\right) \neq 0
$$

for each $e \in D(G)$, we have

$$
\operatorname{det}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right) \neq 0
$$

Thus, $\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}$ is invertible. Therefore, it follows that

$$
\operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)\right)=\operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho} \mathbf{L}_{\rho}{ }^{t} \mathbf{K}_{\rho}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1}\right) \operatorname{det}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)
$$

But, if \mathbf{A} and \mathbf{B} are a $p \times q$ and $q \times p$ matrices, respectively, then we have

$$
\operatorname{det}\left(\mathbf{I}_{p}-\mathbf{A B}\right)=\operatorname{det}\left(\mathbf{I}_{q}-\mathbf{B A}\right)
$$

Thus, we have

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{I}_{b d}-\mathbf{U}_{\rho}\left(\mathbf{B}_{\rho}-\mathbf{J}_{\rho}\right)\right) \\
= & \operatorname{det}\left(\mathbf{I}_{a d}-{ }^{t} \mathbf{K}_{\rho}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1} \mathbf{U}_{\rho} \mathbf{L}_{\rho}\right) \operatorname{det}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right) .
\end{aligned}
$$

Next, we have

$$
\left[\begin{array}{cc}
\mathbf{I} & \mathbf{F} \\
\mathbf{H} & \mathbf{I}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
(\mathbf{I}-\mathbf{F H})^{-1} & -\mathbf{F}(\mathbf{I}-\mathbf{H F})^{-1} \\
-\mathbf{H}(\mathbf{I}-\mathbf{F H})^{-1} & (\mathbf{I}-\mathbf{H F})^{-1}
\end{array}\right]
$$

Thus, we have

$$
\begin{aligned}
\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1}= & {\left[\begin{array}{c}
\left(\mathbf{I}_{d} \bigotimes\left(\mathbf{I}-\mathbf{w}\left(e_{1}\right) \mathbf{w}\left(e_{1}^{-1}\right)\right)\right)^{-1} \\
-\left(\rho\left(\alpha\left(e_{1}^{-1}\right)\right) \otimes \mathbf{w}\left(e_{1}^{-1}\right)\right)\left(\mathbf{I}_{d} \otimes\left(\mathbf{I}-\mathbf{w}\left(e_{1}\right) \mathbf{w}\left(e_{1}^{-1}\right)\right)\right)^{-1} \\
\vdots \\
\end{array}\right.} \\
& -\left(\rho\left(\alpha\left(e_{1}\right)\right) \otimes \mathbf{w}\left(e_{1}\right)\right)\left(\mathbf{I}_{d} \otimes\left(\mathbf{I}-\mathbf{w}\left(e_{1}^{-1}\right) \mathbf{w}\left(e_{1}\right)\right)\right)^{-1} \\
& \ldots \\
& \left(\mathbf{I}_{d} \otimes\left(\mathbf{I}-\mathbf{w}\left(e_{1}^{-1}\right) \mathbf{w}\left(e_{1}\right)\right)\right)^{-1}
\end{aligned}
$$

Since $(\mathbf{I} \otimes \mathbf{F})(\mathbf{I} \otimes \mathbf{H})^{-1}=\mathbf{I} \otimes \mathbf{F H}^{-1}$, we have

$$
\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1}=\left[\begin{array}{ccc}
\mathbf{I}_{d} \otimes x_{1}^{-1} & -\rho\left(\alpha\left(e_{1}\right)\right) \otimes \mathbf{w}\left(e_{1}\right) y_{1}^{-1} & \\
-\rho\left(\alpha\left(e_{1}^{-1}\right)\right) \otimes \mathbf{w}\left(e_{1}^{-1}\right) x_{1}^{-1} & \mathbf{I}_{d} \otimes y_{1}^{-1} & \\
& & \ddots
\end{array}\right]
$$

where $x_{i}=\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)$ and $y_{i}=\mathbf{I}_{a_{t\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}^{-1}\right) \mathbf{w}\left(e_{i}\right)$ for $1 \leq i \leq m$. But, for an arc $(x, y) \in D(G)$,

$$
\left({ }^{t} \mathbf{K}_{\rho}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1} \mathbf{U}_{\rho} \mathbf{L}_{\rho}\right)_{x y}=\rho(\alpha(x, y)) \bigotimes\left(\mathbf{I}_{a_{x}}-\mathbf{w}(x, y) \mathbf{w}(y, x)\right)^{-1} \mathbf{w}(x, y)
$$

Furthermore, if $x=y$, then

$$
\left({ }^{t} \mathbf{K}_{\rho}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1} \mathbf{U}_{\rho} \mathbf{L}_{\rho}\right)_{x x}=-\mathbf{I}_{d} \bigotimes \sum_{o(e)=x} \mathbf{w}(e)\left(\mathbf{I}_{a_{t(e)}}-\mathbf{w}\left(e^{-1}\right) \mathbf{w}(e)\right)^{-1} \mathbf{w}\left(e^{-1}\right)
$$

Thus,

$$
\operatorname{det}\left(\mathbf{I}_{a d}-{ }^{t} \mathbf{K}_{\rho}\left(\mathbf{I}_{b d}+\mathbf{U}_{\rho} \mathbf{J}_{\rho}\right)^{-1} \mathbf{U}_{\rho} \mathbf{L}_{\rho}\right)=\operatorname{det}\left(\mathbf{I}_{a d}+\mathbf{I}_{d} \bigotimes \hat{\mathbf{D}}(G)-\sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{g}\right)
$$

Therefore, it follows that

$$
\zeta_{G}(\mathbf{w}, \rho, \alpha)^{-1}=\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a_{o\left(e_{i}\right)}}-\mathbf{w}\left(e_{i}\right) \mathbf{w}\left(e_{i}^{-1}\right)\right)^{d} \operatorname{det}\left(\mathbf{I}_{a d}+\mathbf{I}_{d} \bigotimes \widehat{\mathbf{D}}(G)-\sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{g}\right)
$$

Q.E.D.

By Theorems 4,5, the following result holds.

Corollary 1 Let G be a connected graph, Γ a finite group, $\alpha: D(G) \longrightarrow \Gamma$ an ordinary voltage assignment and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrix-weight of G. Then we have

$$
\zeta_{G^{\alpha}}(\tilde{\mathbf{w}})=\prod_{\rho} \zeta_{G}(\mathbf{w}, \rho, \alpha)^{\operatorname{deg} \rho}
$$

where ρ runs over all inequivalent irreducible representations of Γ.

4 Special case

Let G be a connected graph, $a_{v} \in \mathbf{N}$ for each $v \in V(G)$, and $\{\mathbf{w}(e) \mid e \in D(G)\}$ a matrixweight of G, where $\mathbf{w}(e)$ is an $a_{o(e)} \times a_{t(e)}$ matrix.

Now, suppose that $a_{v}=a$ (constant) $\in \mathbf{N}$ for any $v \in V(G)$ and $\mathbf{w}\left(e^{-1}\right)=\mathbf{w}(e)^{-1}$ for each $e \in D(G)$. Then we define a special matrix-weighted zeta function of G as follows:

$$
\zeta_{G}(\mathbf{w}, t)=\prod_{[C]}\left(1-\mathbf{w}(C) t^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G.
Considering the matrix-weighted zeta function of a graph G for the matrix-weight $\{\mathbf{w}(e) t \mid e \in D(G)\}$, we obtain a determinant expression for $\zeta_{G}(\mathbf{w}, t)$.

Corollary 2 Let G be a connected graph with n vertices and m edges, $a \in \mathbf{N}$, and $\{\mathbf{w}(e) t \mid$ $e \in D(G)\}$ a matrix-weight of G, where $\mathbf{w}(e)$ is an a \times a matrix.

Then the reciprocal of $\zeta_{G}(\mathbf{w}, t)$ for G is given by

$$
\zeta_{G}(\mathbf{w}, t)^{-1}=\left(1-t^{2}\right)^{(m-n) a} \operatorname{det}\left(\mathbf{I}_{a n}-t \mathbf{W}(G)+t^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right) \bigotimes \mathbf{I}_{a}\right)
$$

where the an \times an matrix $\mathbf{W}(G)=\left(w_{x y}\right)_{x, y \in V(G)}$ is given as follows:

$$
w_{x y}= \begin{cases}\mathbf{w}(x, y) & \text { if }(x, y) \in D(G) \\ \mathbf{0}_{a} & \text { otherwise }\end{cases}
$$

Proof. Since $\mathbf{w}\left(e^{-1}\right)=\mathbf{w}(e)^{-1}$ for each $e \in D(G)$, we have $\mathbf{w}(e) \mathbf{w}\left(e^{-1}\right)=\mathbf{w}\left(e^{-1}\right) \mathbf{w}(e)=$ \mathbf{I}_{a}. By Theorem 2, we have

$$
\zeta_{G}(\mathbf{w}, t)^{-1}=\prod_{i=1}^{m} \operatorname{det}\left(\mathbf{I}_{a}-t^{2} \mathbf{I}_{a}\right) \operatorname{det}\left(\mathbf{I}_{a n}+\hat{\mathbf{D}}(G)-\hat{\mathbf{A}}\right)
$$

But, we have

$$
\hat{\mathbf{D}}=\frac{t^{2}}{1-t^{2}} \mathbf{D} \bigotimes \mathbf{I}_{a}, \hat{\mathbf{A}}=\frac{t}{1-t^{2}} \mathbf{W}(G)
$$

Thus,

$$
\begin{aligned}
& \zeta_{G}(\mathbf{w}, t)^{-1}=\left(1-t^{2}\right)^{m a} \operatorname{det}\left(\mathbf{I}_{a n}-t /\left(1-t^{2}\right) \mathbf{W}(G)+t^{2} /\left(1-t^{2}\right) \mathbf{D} \otimes \mathbf{I}_{a}\right) \\
= & \left(1-t^{2}\right)^{(m-n) a} \operatorname{det}\left(\mathbf{I}_{a n}-t \mathbf{W}(G)+t^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right) \otimes \mathbf{I}_{a}\right) .
\end{aligned}
$$

Q.E.D.

In the case of $a=1$, the zeta function $\zeta_{G}(w, t)$ of G is the weighted zeta function $\mathbf{Z}(G, w, t)$ of G introduced by Mizuno and Sato [8]:

$$
\mathbf{Z}(G, w, t)=\prod_{[C]}\left(1-w(C) t^{|C|}\right)^{-1}
$$

where $[C]$ runs over all equivalence classes of prime, reduced cycles of G.
By Corollary 2, we obtain a determinant expression for the weighted zeta function of a graph.

Corollary 3 (Mizuno and Sato) Let G be a connected graph with n vertices and m edges, $\{w(e) t \mid e \in D(G)\}$ a scalar-weight of G. Suppose that $w\left(e^{-1}\right)=w(e)^{-1}$ for each $e \in D(G)$. Then the reciprocal of $\mathbf{Z}(G, w, t)$ is given by

$$
\mathbf{Z}(G, w, t)^{-1}=\left(1-t^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-t \mathbf{W}(G)+t^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right),
$$

where $\mathbf{W}(G)$ is an $n \times n$ matrix.

References

[1] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
[2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.
[3] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the IharaSelberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.
[4] J. L. Gross and T. W. Tucker, Topological Graph Theory, (Wiley-Interscience, New York, 1987).
[5] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, in Adv. Stud. Pure Math. Vol. 15 (Academic Press, New York, 1989) 211-280.
[6] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[7] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
[8] H. Mizuno and I. Sato, Weighted zeta functions of graphs, J. Combin. Theory Ser. B. 91 (2004), 169-183.
[9] J. -P. Serre, Linear Representations of Finite Group, (Springer-Verlag, New York, 1977).
[10] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
[11] T. Sunada, L-Functions in Geometry and Some Applications, in Lecture Notes in Math., Vol. 1201 (Springer-Verlag, New York, 1986) 266-284.
[12] T. Sunada, Fundamental Groups and Laplacians(in Japanese), (Kinokuniya, Tokyo, 1988).
[13] Y. Watanabe and K. Fukumizu, Loopy belief propagation, Bethe free energy and graph zeta function, Advances in Neural Information Processing Systems 22, 2017-2025, MIT Press (2010).

[^0]: *Supported by Grant-in-Aid for Science Research (C)

