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1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [6]. In [6],
Ihara showed that their reciprocals are explicit polynomials. A zeta function of a regular
graph G associated with a unitary representation of the fundamental group of G was devel-
oped by Sunada [11,12]. Hashimoto [5] generalized Ihara’s result on the zeta function of a
regular graph to an irregular graph, and showed that its reciprocal is again a polynomial
given by a determinant containing the edge matrix. Bass [2] presented another determinant
expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [10] gave an elementary proof of Bass’ Theorem, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were
given by Foata and Zeilberger [3], Kotani and Sunada [7].

As a matrix-variable zeta function of a graph, Watanabe and Fukumizu [13] defined the
matrix-weighted zeta function of a graph and presented its determinant expression.

In this paper, we present a decomposition formula for the matrix-weighted zeta function
of a regular covering of a graph G. Furthermore, we define a matrix-weighted L-function
of G, and give a determinant expression of it. As an application, we express the matrix-
weighted zeta function of a regular covering ofG by a product of matrix-weighted L-functions
of G.

Graphs treated here are finite. Let G = (V (G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V (G) of vertices and the set E(G) of unoriented
edges uv joining two vertices u and v. For uv ∈ E(G), an arc (u, v) is the oriented edge
from u to v. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For e = (u, v) ∈ D(G), set u = o(e)
and v = t(e). Furthermore, let e−1 = (v, u) be the inverse of e = (u, v).

A path P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈ D(G),
t(ei) = o(ei+1)(1 ≤ i ≤ n−1), where indices are treatedmod n. If ei = (vi, vi+1) (1 ≤ i ≤ n),
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then we write P = (v1, · · · , vn+1). Set | P |= n, o(P ) = o(e1) and t(P ) = t(en). Also, P
is called an (o(P ), t(P ))-path. We say that a path P = (e1, · · · , en) has a backtracking if
e−1
i+1 = ei for some i(1 ≤ i ≤ n − 1). A (v, w)-path is called a v-cycle (or v-closed path) if

v = w. The inverse cycle of a cycle C = (e1, · · · , en) is the cycle C−1 = (e−1
n , · · · , e−1

1 ).
We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em) and

C2 = (f1, · · · , fm) are called equivalent if there exists k such that fj = ej+k for all j. The
inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which
contains a cycle C. Let Br be the cycle obtained by going r times around a cycle B. Such
a cycle is called a power of B. A cycle C is reduced if C has no backtracking. Furthermore,
a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence
class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group π1(G, v) of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of u ∈ C with |u| sufficiently small,
defined by

Z(G, u) = ZG(u) =
∏
[C]

(1− u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G(see [6]).
Let m be the number of edges of G. Furthermore, let two m × m matrices B =

(Be,f )e,f∈D(G) and J0 = (Je,f )e,f∈D(G) be defined as follows:

Be,f =

{
1 if t(e) = o(f),
0 otherwise,

Je,f =

{
1 if f = e−1,
0 otherwise.

Then B− J0 is called the edge matrix of G.

Theorem 1 (Hashimoto; Bass) Let G be a connected graph with n vertices and m edges.
Then the reciprocal of the Ihara zeta function of G is given by

Z(G, u)−1 = det(I2m − u(B− J0)) = (1− u2)r−1 det(In − uA(G) + u2(D− In)),

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and
D = (dij) is the diagonal matrix with dii = deg vi where V (G) = {v1, · · · , vn}.

Next, we state a matrix-weighted zeta function of a graph G. Let G be a connected graph
with n vertices v1, · · · , vn and m edges, and (a1, . . . , an) ∈ Nn. Set avi = ai(1 ≤ i ≤ n).
Then, for each e = (vi, vj) ∈ D(G), let w(e) = w(vi, vj) be an ai × aj matrix. The set
{w(e) | e ∈ D(G)} is called the matrix-weight of G. For each cycle C = (ei1 , . . . , eik), set

w(C) = w(ei1) · · ·w(eik).

Then the matrix-weighted zeta function ζG(w) of G is defined by

ζG(w) =
∏
[C]

det(I−w(C))−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
LetD(G) = {e1, · · · , em, e−1

1 , · · · , e−1
m }. Arrange arcs ofG as follows: e1, e

−1
1 , · · · , em, e−1

m .
Let

U =

 w(e1) 0
w(e−1

1 )

0
. . .

 .



Set a = a1 + · · · + an and b =
∑

e∈D(G)(ao(e) + at(e)). Furthermore, let two b × b matrices

B = (Be,f )e,f∈D(G) and J0 = (Je,f )e,f∈D(G) be defined as follows:

Be,f =

{
Iat(e)

if t(e) = o(f),
0at(e),ao(f)

otherwise,
Je,f =

{
Iat(e)

if f = e−1,
0at(e),ao(f)

otherwise,

where Be,f and Je,f are at(e) × ao(f) matrices.

Next, we define an a× a matrix Â = Â(G) = (Axy) as follows:

Axy =

{
(Iax −w(x, y)w(y, x))−1w(x, y) if (x, y) ∈ D(G),
0ax,ay otherwise.

Furthermore, an a× a matrix D̂ = D̂(G) = (Dxy) is the diagonal matrix defined by

Dxx =
∑

o(e)=x

w(e)(I−w(e−1)w(e))−1w(e−1).

A determinant expression for ζG(w) was given as follows:

Theorem 2 (Watanabe and Fukumizu) Let G be a connected graph, av ∈ N for each
v ∈ V (G), and {w(e) | e ∈ D(G)} a matrix-weight of G, where w(e) is an ao(e) × at(e)
matrix. Then the reciprocal of the matrix-weighted zeta function of G is given by

ζG(w)−1 = det(Ib −U(B− J0)) = det(Ia + D̂− Â)
m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i )),

where n =| V (G) |, m =| E(G) | and D(G) = {e±1
1 , . . . , e±1

m }.

We use Amitsur’s identity to present a determinant expression for a matrix-weighted L-
function of a graph G. Foata and Zeilberger [3] gave a new proof of Bass’ Theorem by using
the algebra of Lyndon words. Let X be a finite nonempty set, < a total order in X, and
X∗ the free monoid generated by X. Then the total order < on X derives the lexicographic
order <∗ on X∗. A Lyndon word in X is defined to a nonempty word in X∗ which is prime,
i.e., not the power lr of any other word l for any r ≥ 2, and which is also minimal in the
class of its cyclic rearrangements under <∗. Let L denote the set of all Lyndon words in X.

Foata and Zeilberger[3] gave a short proof of Amitsur’s identity [1].

Theorem 3 (Amitsur) For square matrices A1, · · · ,Ak,

det(I− (A1 + · · ·+Ak)) =
∏
l∈L

det(I−Al),

where the product runs over all Lyndon words in {1, · · · , k}, and Al = Ai1 · · ·Aip for
l = i1 · · · ip.

In this paper, we define a matrix-weighted L-function of a graph G, and give a determi-
nant expression of it.

In Section 2, we present a decomposition formula for the matrix-weighted zeta function
of a regular covering of a graph G. In Section 3, we define a matrix-weighted L-function
of G, and give a determinant expression of it. As a corollary, we obtain a decomposition
formula for the matrix-weighted zeta function of a regular covering of G by matrix-weighted
L-functions of G.



2 Zeta functions of regular coverings of graphs

Let G be a connected graph, and let N(v) = {w ∈ V (G) | (v, w) ∈ D(G)} denote the
neighbourhood of a vertex v in G. A graph H is called a covering of G with projection
π : H −→ G if there is a surjection π : V (H) −→ V (G) such that π|N(v′) : N(v′) −→ N(v)

is a bijection for all vertices v ∈ V (G) and v′ ∈ π−1(v). When a finite group Π acts on a
graph G, the quotient graph G/Π is a graph whose vertices are the Π-orbits on V (G), with
two vertices adjacent in G/Π if and only if some two of their representatives are adjacent in
G. A covering π : H −→ G is said to be regular if there is a subgroup B of the automorphism
group AutH of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and Γ a finite group. Then a mapping α : D(G) −→ Γ is called an
ordinary voltage assignment if α(v, u) = α(u, v)−1 for each (u, v) ∈ D(G). The pair (G,α)
is called an ordinary voltage graph. The derived graph Gα of the ordinary voltage graph
(G,α) is defined as follows: V (Gα) = V (G) × Γ and ((u, h), (v, k)) ∈ D(Gα) if and only
if (u, v) ∈ D(G) and k = hα(u, v). The natural projection π : Gα −→ G is defined by
π(u, h) = u. The graph Gα is called a derived graph covering of G with voltages in Γ or a
Γ-covering of G. The natural projection π commutes with the right multiplication action
of the α(e), e ∈ D(G) and the left action of Γ on the fibers: g(u, h) = (u, gh), g ∈ Γ, which
is free and transitive. Thus, the Γ-covering Gα is a | Γ |-fold regular covering of G with
covering transformation group Γ. Furthermore, every regular covering of a graph G is a
Γ-covering of G for some group Γ(see [4]).

In the Γ-covering Gα, set vg = (v, g) and eg = (e, g), where v ∈ V (G), e ∈ D(G), g ∈ Γ.
For e = (u, v) ∈ D(G), the arc eg emanates from ug and terminates at vgα(e). Note that
e−1
g = (e−1)gα(e).

Let av ∈ N for each v ∈ V (G), and {w(e) | e ∈ D(G)} a matrix-weight of G, where
w(e) is an ao(e) × at(e) matrix. Then we define the matrix-weight w̃ of Gα derived from w
as follows:

w̃(ug, vh) :=

{
w(u, v) if (u, v) ∈ D(G) and h = gα(u, v),
0au,av otherwise.

Let M1 ⊕ · · · ⊕Ms be the block diagonal sum of square matrices M1, · · · ,Ms. If M1 =
M2 = · · · = Ms = M, then we write s ◦M = M1 ⊕ · · · ⊕Ms.

Theorem 4 Let G be a connected graph with n vertices and m edges, Γ a finite group,
α : D(G) −→ Γ an ordinary voltage assignment, av ∈ N for each v ∈ V (G), and {w(e) |
e ∈ D(G)} a matrix-weight of G, where w(e) is an ao(e) × at(e) matrix. Set | Γ |= r.
Furthermore, let ρ1 = 1, ρ2, · · · , ρk be the irreducible representations of Γ, and di the degree

of ρi for each i, where d1 = 1. For g ∈ Γ, the matrix Ag = (a
(g)
xy ) is defined as follows:

a(g)xy :=

{
(Iax

−w(x, y)w(y, x))−1w(x, y) if (x, y) ∈ D(G) and α(x, y) = g,
0ax,ay otherwise.

Suppose that the Γ-covering Gα of G is connected. Then the reciprocal of the matrix-
weighted zeta function of Gα is

ζGα(w̃)−1 =

m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i ))r
k∏

i=1

det(Iadi−
∑
h∈Γ

ρi(h)
⊗

Ah+(Idi

⊗
D̂(G)))di ,

where D(G) = {e±1
1 , . . . , e±1

m }.

Proof . Let V (G) = {v1, · · · , vn} and Γ = {1 = g1, g2, · · · , gr}. Arrange vertices of Gα in
n blocks: (v1, 1), · · · , (vn, 1); (v1, g2), · · · , (vn, g2); · · · ; (v1, gr), · · · , (vn, gr). We consider two



matrices Â(Gα) and D̂(Gα) under this order. By Theorem 2, we have

ζGα(w̃)−1 = det(Iar − Â(Gα) + D̂(Gα))

m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i ))r.

For h ∈ Γ, the matrix Ph = (p
(h)
ij ) is defined as follows:

p
(h)
ij =

{
1 if gih = gj ,
0 otherwise.

Suppose that p
(h)
ij = 1, i.e., gj = gih. Then ((u, gi), (v, gj)) ∈ D(Gα) if and only if

(u, v) ∈ D(G) and gj = giα(u, v), i.e., α(u, v) = g−1
i gj = g−1

i gih = h. Furthermore, if
((u, gi), (v, gj)) ∈ D(Gα), then we have

(Â(Gα))ugi
,vgj

= (I− w̃(ugi , vgj )w̃(vgj , ugi))
−1w̃(ugi , vgj )

= (I−w(u, v)w(v, u))−1w(u, v).

Thus we have
Â(Gα) =

∑
h∈Γ

Ph

⊗
Ah.

Next, since w̃(ẽ) = w(e) and w̃(ẽ−1) = w(e−1) for e ∈ D(G) and ẽ ∈ π−1(e), we have

(D̂(Gα))ugi
,ugi

=
∑

o(ẽ)=ugi
w̃(ẽ)(I− w̃(ẽ−1)w̃(ẽ))−1w̃(ẽ−1)

=
∑

o(e)=u w(e)(I−w(e−1)w(e))−1w(e−1).

Thus,

D̂(Gα) = Ir
⊗

D̂(G).

Let ρ be the right regular representation of Γ. Furthermore, let ρ1 = 1, ρ2, · · · , ρk be
the irreducible representations of Γ, and di the degree of ρi for each i, where d1 = 1. Then
we have ρ(h) = Ph for h ∈ Γ. Furthermore, there exists a nonsingular matrix P such
that P−1ρ(h)P = (1) ⊕ d2 ◦ ρ2(h) ⊕ · · · ⊕ dk ◦ ρk(h) for each h ∈ Γ(see [9]). Putting

F = (P−1
⊗

I)Â(Gα)(P
⊗

I), we have

F =
∑
h∈Γ

{(1)⊕ d2 ◦ ρ2(h)⊕ · · · ⊕ dk ◦ ρk(h)}
⊗

Ah.

Note that Â(G) =
∑

h∈Γ Ah and 1 + d22 + · · ·+ d2k = r. Therefore it follows that

ζGα(w̃)−1 =

k∏
i=1

{
m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i ))di det(Iadi−
∑
h∈Γ

ρi(h)
⊗

Ah+Idi

⊗
D̂(G))}di .

Q.E.D.

3 L-functions of graphs

Let G be a connected graph with m edges, Γ a finite group, α : D(G) −→ Γ an ordinary
voltage assignment, av ∈ N for each v ∈ V (G), and {w(e) | e ∈ D(G)} a matrix-weight of
G, where w(e) is an ao(e) × at(e) matrix. For each path P = (e1, · · · , er) of G, set α(P ) =



α(e1) · · ·α(er). This is called the net voltage of P . Furthermore, let ρ be a representation
of Γ and d its degree.

The matrix-weighted L-function of G associated with ρ and α is defined by

ζG(w, ρ, α) =
∏
[C]

det(Idao(C)
− ρ(α(C))

⊗
w(C))−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Let D(G) = {e1, e−1

1 , . . . , em, e−1
m } and

Uρ =

 ρ(α(e1))
⊗

w(e1) 0
ρ(α(e−1

1 ))
⊗

w(e−1
1 )

0
. . .

 .

Furthermore, let two bd × bd matrices Bρ = (B
(ρ)
e,f )e,f∈D(G) and Jρ = (J

(ρ)
e,f )e,f∈D(G) be

defined as follows:

B
(ρ)
e,f =

{
Id

⊗
Iat(e)

if t(e) = o(f),
0dat(e),dao(f)

otherwise,
J
(ρ)
e,f =

{
Id

⊗
Iat(e)

if f = e−1,
0dat(e),dao(f)

otherwise.

A determinant expression for the matrix-weighted L-function of G associated with ρ and
α is given as follows:

Theorem 5 Let G be a connected graph, av ∈ N for each v ∈ V (G), and {w(e) | e ∈ D(G)}
a matrix-weight of G, where w(e) is an ao(e) × at(e) matrix. Suppose that

det(Iao(e)
−w(e)w(e−1)) ̸= 0

for each e ∈ D(G). Then the reciprocal of the matrix-weighted L-function of G is given by

ζG(w, ρ, α)−1 = det(Ibd −Uρ(Bρ − Jρ))

=
m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i ))d det(Iad + Id
⊗

D̂(G)−
∑
g∈Γ

ρ(g)
⊗

Ag),

where n =| V (G) |, m =| E(G) | and D(G) = {e±1
1 , . . . , e±1

m }.

Proof. Let V (G) = {v1, · · · , vn} and, let D(G) = {e1, · · · , em, e−1
1 , · · · , e−1

m }. Arrange
arcs of G as follows: e1, e

−1
1 , · · · , em, e−1

m . Then two bd× bd matrices Bρ
w = (Bρ,w

e,f )e,f∈D(G)

and Jρ
w = (Jρ,w

e,f )e,f∈D(G) are defined as follows:

Bρ,w
e,f =

{
ρ(α(e))

⊗
w(e) if t(e) = o(f),

0dat(e),dao(f)
otherwise,

Jρ,w
e,f =

{
ρ(α(e))

⊗
w(e) if f = e−1,

0dat(e),dao(f)
otherwise.

Now, set D(G) = {e1, · · · , em, em+1, · · · , e2m} such that em+i = e−1
i (1 ≤ i ≤ m). For

each arc ej ∈ D(G) (1 ≤ j ≤ 2m), let Xej be the b× b matrix whose the dcj−1 + 1, · · · , dcj
rows are the dcj−1 + 1, · · · , dcj rows of Bρ

w − Jρ
w, and whose other rows are 0, where cj =∑j

k=1 ao(ek) for 1 ≤ i ≤ m. Set M = I−
∑

e∈D(G) Xe. Then, for any sequence of arcs π,

det(I−Xπ) =

{
det(I− ρ(α(π))

⊗
w(π)) if π is a prime, reduced cycle,

1 otherwise,

where Xπ = Xe1 · · ·Xer for π = (e1 · · · er). By Theorem 3, we have

ζG(w, ρ, α)−1 = detM = det(Ibd − (Bρ
w − Jρ

w)).



But, we have
UρBρ = Bρ

w and UρJρ = Jρ
w.

Thus,
Bρ

w − Jρ
w = Uρ(Bρ − Jρ).

Therefore, it follows that

ζG(w, ρ, α)−1 = det(Ibd −Uρ(Bρ − Jρ)).

Now, let Kρ = (K
(ρ)
ev ) e∈D(G);v∈V (G) be the bd× ad matrix defined as follows:

K(ρ)
ev :=

{
Id

⊗
Iav if o(e) = v,

0dao(e),dav otherwise.

Furthermore, we define the bd× ad matrix L = (L
(ρ)
ev )e∈D(G);v∈V (G) as follows:

L(ρ)
ev :=

{
Id

⊗
Iav if t(e) = v,

0dat(e),dav otherwise.

Then we have
Lρ

tKρ = Bρ.

Thus,
det(Ibd −Uρ(Bρ − Jρ))

= det(Ibd −Uρ(Lρ
tKρ − Jρ)) = det(Ibd −UρLρ

tKρ +UρJρ).

Now, the bd× ad matrix UρLρ = (c
(ρ)
ev )e∈D(G);v∈V (G) is given as follows:

c(ρ)ev :=

{
ρ(α(e))

⊗
w(e) if t(e) = v,

0dat(e),dav otherwise.

Furthermore, we have

det

([
I F
H I

])
= det

([
I F
H I

])
· det

([
I 0

−H I

])

= det

([
I− FH F

0 I

])
= det(I− FH),

and so,

det(Ibd +UρJρ) =
∏m

i=1 det(Idao(ei)
− (ρ(α(ei))

⊗
w(ei))(ρ(α(e

−1
i ))

⊗
w(e−1

i ))

=
∏m

i=1 det(Idao(ei)
− Id

⊗
w(ei)w(e−1

i ))

=
∏m1

i=1 det(Id)
ao(ei) det(Iao(ei)

−w(ei)w(e−1
i ))d

=
∏m

i=1 det(Iao(ei)
−w(ei)w(e−1

i ))d.

By the hypothesis that
det(Iao(e)

−w(e)w(e−1)) ̸= 0

for each e ∈ D(G), we have
det(Ibd +UρJρ) ̸= 0.



Thus, Ibd +UρJρ is invertible. Therefore, it follows that

det(Ibd −Uρ(Bρ − Jρ)) = det(Ibd −UρLρ
tKρ(Ibd +UρJρ)

−1) det(Ibd +UρJρ).

But, if A and B are a p× q and q × p matrices, respectively, then we have

det(Ip −AB) = det(Iq −BA).

Thus, we have

det(Ibd −Uρ(Bρ − Jρ))

= det(Iad − tKρ(Ibd +UρJρ)
−1UρLρ) det(Ibd +UρJρ).

Next, we have [
I F
H I

]−1

=

[
(I− FH)−1 −F(I−HF)−1

−H(I− FH)−1 (I−HF)−1

]
.

Thus, we have

(Ibd +UρJρ)
−1 =

 (Id
⊗

(I−w(e1)w(e−1
1 )))−1

−(ρ(α(e−1
1 ))

⊗
w(e−1

1 ))(Id
⊗

(I−w(e1)w(e−1
1 )))−1

...

−(ρ(α(e1))
⊗

w(e1))(Id
⊗

(I−w(e−1
1 )w(e1)))

−1 . . .
(Id

⊗
(I−w(e−1

1 )w(e1)))
−1

. . .


Since (I

⊗
F)(I

⊗
H)−1 = I

⊗
FH−1, we have

(Ibd +UρJρ)
−1 =

 Id
⊗

x−1
1 −ρ(α(e1))

⊗
w(e1)y

−1
1

−ρ(α(e−1
1 ))

⊗
w(e−1

1 )x−1
1 Id

⊗
y−1
1

. . .

 ,

where xi = Iao(ei)
−w(ei)w(e−1

i ) and yi = Iat(ei)
−w(e−1

i )w(ei) for 1 ≤ i ≤ m.
But, for an arc (x, y) ∈ D(G),

(tKρ(Ibd +UρJρ)
−1UρLρ)xy = ρ(α(x, y))

⊗
(Iax −w(x, y)w(y, x))−1w(x, y).

Furthermore, if x = y, then

(tKρ(Ibd +UρJρ)
−1UρLρ)xx = −Id

⊗ ∑
o(e)=x

w(e)(Iat(e)
−w(e−1)w(e))−1w(e−1).

Thus,

det(Iad − tKρ(Ibd +UρJρ)
−1UρLρ) = det(Iad + Id

⊗
D̂(G)−

∑
g∈Γ

ρ(g)
⊗

Ag),

Therefore, it follows that

ζG(w, ρ, α)−1 =

m∏
i=1

det(Iao(ei)
−w(ei)w(e−1

i ))d det(Iad + Id
⊗

D̂(G)−
∑
g∈Γ

ρ(g)
⊗

Ag).

Q.E.D.
By Theorems 4,5, the following result holds.



Corollary 1 Let G be a connected graph, Γ a finite group, α : D(G) −→ Γ an ordinary
voltage assignment and {w(e) | e ∈ D(G)} a matrix-weight of G. Then we have

ζGα(w̃) =
∏
ρ

ζG(w, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ.

4 Special case

Let G be a connected graph, av ∈ N for each v ∈ V (G), and {w(e) | e ∈ D(G)} a matrix-
weight of G, where w(e) is an ao(e) × at(e) matrix.

Now, suppose that av = a (constant) ∈ N for any v ∈ V (G) and w(e−1) = w(e)−1 for
each e ∈ D(G). Then we define a special matrix-weighted zeta function of G as follows:

ζG(w, t) =
∏
[C]

(1−w(C)t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Considering the matrix-weighted zeta function of a graph G for the matrix-weight

{w(e)t | e ∈ D(G)}, we obtain a determinant expression for ζG(w, t).

Corollary 2 Let G be a connected graph with n vertices and m edges, a ∈ N, and {w(e)t |
e ∈ D(G)} a matrix-weight of G, where w(e) is an a× a matrix.

Then the reciprocal of ζG(w, t) for G is given by

ζG(w, t)−1 = (1− t2)(m−n)a det(Ian − tW(G) + t2(D− In)
⊗

Ia),

where the an× an matrix W(G) = (wxy)x,y∈V (G) is given as follows:

wxy =

{
w(x, y) if (x, y) ∈ D(G),
0a otherwise.

Proof. Sincew(e−1) = w(e)−1 for each e ∈ D(G), we havew(e)w(e−1) = w(e−1)w(e) =
Ia. By Theorem 2, we have

ζG(w, t)−1 =
m∏
i=1

det(Ia − t2Ia) det(Ian + D̂(G)− Â).

But, we have

D̂ =
t2

1− t2
D

⊗
Ia, Â =

t

1− t2
W(G).

Thus,

ζG(w, t)−1 = (1− t2)ma det(Ian − t/(1− t2)W(G) + t2/(1− t2)D
⊗

Ia)

= (1− t2)(m−n)a det(Ian − tW(G) + t2(D− In)
⊗

Ia).

Q.E.D.
In the case of a = 1, the zeta function ζG(w, t) of G is the weighted zeta function

Z(G,w, t) of G introduced by Mizuno and Sato [8]:

Z(G,w, t) =
∏
[C]

(1− w(C)t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
By Corollary 2, we obtain a determinant expression for the weighted zeta function of a

graph.



Corollary 3 (Mizuno and Sato) Let G be a connected graph with n vertices and m edges,
{w(e)t | e ∈ D(G)} a scalar-weight of G. Suppose that w(e−1) = w(e)−1 for each e ∈ D(G).
Then the reciprocal of Z(G,w, t) is given by

Z(G,w, t)−1 = (1− t2)m−n det(In − tW(G) + t2(D− In)),

where W(G) is an n× n matrix.
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